Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2011, vol. 41, nr 2, April-June, p. 57–61

Publication type: original article

Language: Polish

Opis transportu membranowego przy pomocy termodynamiki Peusnera: relacje między współczynnikami Rik, Lik, Hik i Pik

Description of the membrane transport using Peusner’s network thermodynamics: relations between Rik, Lik, Hik and Pik coefficients

Andrzej Ślęzak1,

1 Katedra Zdrowia Publicznego, Politechnika Częstochowska, Częstochowa

Streszczenie

W pracy, korzystając z równań KedemKatchalsky’ego w wersji Peusnera, wyprowadzono relacje między współczynnikami Rik, Lik, Hik i Pik (i≠k=1, 2), dla membrany polimerowej i roztworów nieelektrolitów.

Abstract

In the paper, using the Kedem-Katchalsky equations in Peusner’s version, the relations between Rik, Lik, Hik i Pik (i≠k=1, 2), coefficients for polymeric membrane and nonelectrolytic solutions were derived.

Słowa kluczowe

transport membranowy, termodynamika sieciowa Peusnera, równania Kedem-Katchalsky’ego

Key words

membrane transport, Peusner’s network thermodynamics, Kedem-Katchalsky equations

References (17)

  1. Oster G. F., Perelson A., Katchalsky A.: Network thermodynamics. Nature (1971), 234, 393–399.
  2. Peusner L.: The principles of network thermodynamics and biophysical applications. Ph D Thesis, Harvard Univ., Cambridge, 1970.
  3. Demirel Y.: Nonequilibrium thermodynamics. Transport and rate processes in physical and biological systems. Elsevier, Amsterdam, 2002.
  4. Perelson A. S.: Network thermodynamics. Biophys. J. (1975), 15, 667–685.
  5. Peusner L.: Hierarchies of irreversible energy conversion processes. III. Why areOnsager equations reciprocal? The Euclidean geometry of fluctuaction-dissipation space. J. Theoret. Biol. (1986), 122, 125–155.
  6. Mikulecky D.: The circle that never ends: can complexity be made simple? W: Complexity in chemistry, biology and ecology, D.D. Bonvchev, D. Rouvaray red., Springer, Berlin 2005, 97–153.
  7. Playtner H.: Analysis and design of engineering systems. MIT, Cambridge, 1961.
  8. Peusner L.: Hierarchies of irreversible energy conversion systems: a network thermodynamics approach. I. Linear steady state without storage. J. Theoret. Biol. (1983), 102, 7–39.
  9. Peusner L.: Hierarchies of irreversible energy conversion systems. II. Network derivation of linear transport equations. J. Theoret. Biol. (1985), 115, 319–335.
  10. Peusner L.: Studies in network thermodynamics. Elsevier, Amsterdam, 1986.
  11. Imai Y.: Network thermodynamics: analysis and synthesis of membrane transport system. Japan. J. Physiol. (1996), 46, 187–199.
  12. Imai Y.: Graphic modeling of epithelial transport system: causality of dissipation. BioSystems (2003), 70, 9–19.
  13. Peusner L.: Network representation yelding the evolution of Brownian motion with multiple particle interaction. Phys. Rev. (1985), 32, 1237– 1238.
  14. Peusner L., Mikulecky D. C., Bunow B., Caplan S. R.: A network thermodynamic approach to hill and King-Altman reaction-diffusion kinetics. J. Chem. Phys. (1985), 83, 5559–5566.
  15. Newman S. A., Forgacs G.: Complexity and self-organization in biological development and evolution. W: Complexity in chemistry, biology and ecology, D. D. Bonvchev, D. Rouvaray red., Springer, Berlin 2005, 49–96.
  16. Katchalsky A., Curran P.F.: Nonequilibrium thermodynamics in biophysics, Harvard Univ. Press, Cambridge,1965.
  17. Ślęzak A.: Zastosowanie sieci termodynamicznych do interpretacji transportu w mikroukładach: transport jednorodnych roztworów nieelektrolitów przez membranę polimerową. Polim. Med. (2011), 41, 29–41.