Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download original text (EN)

Polymers in Medicine

2024, vol. 54, nr 2, July-December, p. 161–166

doi: 10.17219/pim/196351

Publication type: research letter

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Korbut A. High-filler content electrospun fibers from biodegradable polymers and hydroxyapatite: Toward improved scaffolds for tissue engineering. Polim Med. 2024;54(2):161–166. doi:10.17219/pim/196351

High-filler content electrospun fibers from biodegradable polymers and hydroxyapatite: Toward improved scaffolds for tissue engineering

Elektroprzędzone włókna o wysokiej zawartości napełniacza otrzymane z biodegradowalnych polimerów i hydroksyapatytu: w kierunku ulepszonych rusztowań dla inżynierii tkankowej

Aleksandra Korbut1,A,B,C,D,E,F

1 Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland

Graphical abstract


Graphical abstracts

Abstract

Background. One of the key challenges in tissue engineering area is the creation of biocompatible scaffolds that support cell growth and mimic the structural and mechanical properties of native tissues. Among various materials used for scaffold fabrication, composite materials based on biodegradable polymers reinforced with bioactive inorganic fillers have attracted significant attention due to their properties. One of the important problems with the preparation of composite electrospun fibers is the low filler content in the fiber.

Objectives. This study aims to select the best composition for electrospun polymer fibers in terms of potential application in tissue engineering. The effect of the viscosity of polymer solution/dispersion and filler content on the structure and properties of the fibers was determined. Morphology and filler content were compared.

Materials and methods. Series of electrospun composite fibers were fabricated from poly(ε-caprolactone) (PCL), poly(L-lactic acid) (PLLA) and hydroxyapatite (HAP), containing from 10 wt% to 40 wt% HAP. The properties of the resulting composites were studied using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and viscosimetry measurements.

Results. The addition of HAP to the polymer solution caused a significant increase in viscosity, but the results showed that it is possible to obtain composite electrospun fibers even with 40 wt% filler content. Scanning electron microscopy analysis shows randomly oriented electrospun fibers with an average diameter in the range of 3.8–8.5 μm for solution and dispersion with high viscosity (1,210–2,000 mPa·s) and significantly larger diameters (approx. 12 μm) for the PCL solution (326 mPa·s).

Conclusions. It is possible to transform the composite dispersion from biopolymers and HAP into nonwoven fabrics at up to 40 wt% filler content. Due to their unique properties, such materials are promising for application in tissue engineering.

Key words: electrospun fibers, bio-based materials, hydroxyapatite, bone regeneration

Streszczenie

Wprowadzenie. Jednym z kluczowych wyzwań w dziedzinie inżynierii tkankowej jest wytworzenie biokompatybilnych rusztowań, które wspierają wzrost komórek i naśladują strukturalne i mechaniczne właściwości natywnych tkanek. Spośród różnych materiałów wykorzystywanych do produkcji rusztowań, ze względu na swoje właściwości materiały kompozytowe oparte na biodegradowalnych polimerach wzmocnionych bioaktywnymi napełniaczami nieorganicznymi zyskały znaczną uwagę. Jednym z istotnych problemów związanych z przygotowaniem kompozytowych elektroprzędzonych włókien jest niska zawartość napełniacza we włóknie.

Cel pracy. Niniejsza praca miała na celu określenie najlepszego składu elektroprzędzonych włókien polimerowych pod względem potencjalnego zastosowania w inżynierii tkankowej. Zbadano wpływ lepkości roztworu/dyspersji polimeru i zawartości napełniacza na morfologię oraz właściwości włókien.

Materiały i metody. Wytworzono serię mat kompozytowych z polikaprolaktonu (poly(ε-caprolactone) (PCL)), kwasu polimlekowego (poly(L-lactic acid) (PLLA)) i hydroksyapatytu (HAP), zawierających od 10% do 40% wag. HAP. Właściwości otrzymanych materiałów zbadano za pomocą skaningowej mikroskopii elektronowej (scanning electron microscopy (SEM)) i skaningowej kalorymetrii różnicowej (differntial scanning calorimetry (DSC)) oraz wykonano pomiary lepkości.

Wyniki. Dodatek HAP do roztworu polimeru spowodował znaczny wzrost lepkości, ale uzyskane wyniki pokazały, że możliwe jest wytworzenie kompozytowych włókien dobrej jakości nawet przy zawartości 40% wag. napełniacza. Zdjęcia SEM przedstawiają losowo zorientowane włókna o średnicach w zakresie 3,8–8,5 μm dla roztworu i dyspersji o wysokiej lepkości (1210–2000 mPa-s) i znacznie większych średnicach (ok. 12 μm) dla roztworu PCL (326 mPa·s).

Wnioski. Możliwe jest przekształcenie dyspersji kompozytowej na bazie biopolimerów z dodatkiem HAP w włókniny o zawartości napełniacza do 40% wag. Ze względu na swoje unikalne właściwości, takie materiały są obiecujące do zastosowania w inżynierii tkankowej.

Słowa kluczowe: włókna elektroprzędzone, biomateriały, hydroksyapatyt, regeneracja tkanek kostnych

Background

Electrospinning of biodegradable polymers is a modern technique for producing fibrous structures widely used in regenerative medicine that involves forming fibers from a polymer solution using electrostatic forces generated by high-voltage electric fields. Those forces stretch liquid to the form of thin fibers, which are deposited on a collector to form matrices that may resemble the structure of natural tissues.1, 2

Among the popular polymers used in this process are polylactide,3, 4 polycaprolactone,5, 6, 7 and lactic and glycolic acid copolymers8, 9 characterized by biocompatibility and biodegradability, which allows them to be used safely in the body.10, 11 It is possible to easily modify their mechanical and surface properties, allowing them to be tailored to the specific needs of different therapies.12

Various fillers are added to polymers to enhance fiber properties and create composites with improved performance.6, 13, 14 One of the most popular fillers used in composite fibers is hydroxyapatite (HAP), naturally found in bones and teeth. Its addition increases bioactivity, stimulating osteogenesis and accelerating bone tissue regenerative processes.15 Hydroxyapatite also helps to integrate the implant into the tissue, reducing the risk of rejection and promoting the formation of new bone structures.16, 17

Nonwoven fabrics prepared with electrospinning can be used as scaffolds for tissue engineering. Because of their high surface-to-volume ratio and porous structure, these scaffolds allow efficient exchange of nutrients and metabolites, which promotes the regeneration process.18, 19 Using biopolymers reduces the risk of long-term inflammatory reactions after implantation, as the material gradually decomposes and is resorbed in a controlled way.

Objectives

The study aimed to obtain composite nonwoven fabrics made of biocompatible polymers, containing the highest possible amount of bioactive filler (HAP), which support cell growth, differentiation and new tissue formation.20, 21, 22 The unique structure of nonwoven fabrics obtained with electrospinning mimics very well the structure of real tissues, which, combined with the bioactivity of HAP, offers the possibility of their potential use in regenerative medicine.

Materials and methods

The following reagents were used: poly(ε-caprolactone) (PCL; CAPA 6800, Mw ~80,000 g/mol; Perstorp Specialty Chemicals AB, Perstorp, Sweden), Resomer L210s (Mw ~600,000 g/mol; Evonik, Essen, Germany), HAP (synthetic, 99.8%, Sigma-Aldrich, St. Louis, USA), and solvents (POCH S.A., Gliwice, Poland).

Solution/dispersion preparation

In the first step, 3 wt% solution of poly(L-lactic acid) (PLLA) in a mixture of chloroform/N,N-dimethylformamide (9/1v/v) and 15 wt% PCL solution in a mixture of chloroform/methanol (3/1v/v) were prepared. Next, the required amounts of HAP were suspended in the polymer solutions and sonicated for 30 min to obtain a homogeneous dispersion.

Electrospinning process

The electrospinning process was carried out under constant environmental parameters, at 25°C, 40% humidity and constant speed of the rotating drum collector at 300 rpm. The other process parameters were set individually for every mixture: voltage on the needle and collector (from −30.0 kV to 30.0 kV), needle-to-collector distance (100–180 mm) and the solution flow rate (1.0–6.0 mL/h; DOXA Microfluidics, Málaga, Spain).

Characterization of the polymer solutions/dispersions and electrospun mats

For viscosity measurements, a Brookfield DV1 rotational viscometer (AMETEK Brookfield, Middlesborough, USA) was used. The morphology and size of fibers were determined with scanning electron microscopy (SEM) images (Nova NanoSEM 200; FEI, Eindhoven, the Netherlands). The differential scanning calorimetry (DSC) measurements were performed with a Mettler-Toledo DSC1 system (Mettler-Toledo, Columbus, USA) under the following conditions: ~5.5 mg; N2: 60 mL/min; 10°C/min; from –80°C to 120°C (PCL samples) or 0–200°C (PLLA-based samples); thermal equilibrium: 120°C or 200°C for 5 min; then, the solutions were cooled down to −80°C or 0°C, respectively. The crystallinity degree (Xc) was calculated as (Equation 1):

X c = H m - H c c w · H m 100 % · 100 % , (1)

where: ΔHm – measured enthalpies of melting of PCL or PLLA samples, ΔHm100% – the enthalpy of melting of fully crystalline PCL (ΔHm100% = 139 J/g))23 or PLLA (ΔHm100% = 93.7 J/g)),24 ΔHCC – measured enthalpies of cold crystallization of PLLA samples, and w – mass fraction of polymer.

Results and discussion

The effect of solution properties and process parameters on polymer and composite fiber morphology obtained with electrospinning was investigated. Especially, the viscosity of the solution has an important role in determining the range of concentrations from which continuous fibers can be obtained. The addition of dimethylformamide (DMF) to the other solvent (9/1v/v) enabled the production of defect-free and uniform fibers. A binary solvent system containing the 2nd solvent (DMF) with a higher boiling point evaporates slower from the ejected charged jet, causing the jet’s viscoelastic properties to change and therefore improving the jet’s stretching.

However, obtaining composite fibers with mineral filler is a challenge. One of the key parameters determining the success of the electrospinning process is the proper viscosity of the solution/suspension. Even a small addition of filler significantly increases the viscosity of the electrospun dispersion, resulting in difficulties with obtaining homogeneous fibers associated with needle plugging. For this reason, it was necessary to select new, optimal electrospinning process parameters for generating PLLA-HAP or PCL-HAP composite fibers. Each time, the voltage set at the needle is less than at the collector. However, for a pure polymer solution, this value is significantly lower. The flow rate of the electrospun solution/suspension had to be increased with increasing viscosity (from 1.0 mL/h for the pure polymer solution to 6.0 mL/h for the highest viscosity samples).

The morphologies of all electrospun fibers are shown in Figure 1. Scanning electron microscopy analysis shows randomly oriented electrospun fibers with an average diameter presented in Table 1. For most samples, uniform fibers were obtained over the entire electrospun mats. Spindle-shaped deformations were observed on some fibers formed from a solution of pure PLLA (Figure 1E). The reason for their formation may be incomplete evaporation of the solvent during the electrospinning process. The images also confirmed the incorporation of HAP particles into polymer fibers. The highest degree of fiber filling was obtained for the polylactide dispersion PLLA_HAP_60/40 at the process parameters: 15 kV, 6.0 mL/h and 180 mm. In this case, it was possible to fill the fibers with 40 wt% HAP due to the lower impact of mineral filler on the overall suspension viscosity. Up to now, it has been possible to obtain fibers with a maximum HAP content of 30 wt% relative to the polymer.14, 15, 25 Moreover, nonwoven fabricated from this dispersion was the best oriented, and HAP particles were better distributed (Figure 1H) than in other combinations. The same polymer/filler ratio was tested for the 2nd polymer (PCL); however, the viscosity increase made it impossible to carry out the electrospinning process and thus form fibers.

Despite slight differences in viscosity values for the 2 polymers, the process was substantially more efficient for electrospinning from the PLLA solution. This may be due to the difference in polymer solution concentrations. In the case of PLLA, it is already possible to have a polymer concentration 5 times lower (3 wt%) in order to obtain a solution with the viscosity necessary for the electrospinning process and produce mats of good quality, while the minimum concentration for PCL is 15 wt%.

In the case of PCL, a significant effect of HAP addition on solution viscosity was observed (addition of 10 wt% HAP increased the viscosity of 15 wt% PCL solution more than 5 times; Figure 2). For PCL with increasing HAP content, and at the same time viscosity of the system, the average fiber diameter decreases. In the case of PLLA, the effect of the presence of mineral filler on viscosity is significantly smaller. This is also reflected in the diameters of fibers obtained in the electrospinning process, which in the case of PLLA have similar diameters regardless of HAP content. From the solution with the lowest viscosity and highest polymer concentration (PCL 15 wt%, 326 mPa·s), fibers with significantly larger diameters (approx. 12 μm) were obtained. Viscosity of the remaining solutions and dispersions is in the range of 1,210–2,000 mPa·s and fibers obtained from them have average diameter in the range of 3.8–8.5 μm.

The melting and crystallization behavior of electrospun mats was investigated using DSC. As shown in Table 2, the crystallization temperature appears at approx. 116°C for pure PLLA and 30°C for pure PCL, and increases to 118°C and 32°C for PLLA and PCL composite samples, respectively. The subsequent heating curves of PLLA samples show a baseline shift and an endothermic peak located at approx. 72°C and approx. 170°C, respectively, corresponding to glass transition and melting of α/α’ crystals. Besides, an exothermic peak present in the 1st heating curve at 76–84°C can be assigned to cold crystallization. For PCL composite samples Tg is approx. −71°C and −69°C for pure polymer, while Tm is approx. 58°C.

Conclusions

This paper presents the possibility of creating bioactive polymeric composite scaffold based on 2 types of biopolymer (PCL and PLLA) and micro-sized HAP particles in varying ratios, using the electrospinning technique. It was shown that the solvent properties, especially polymer concentration and viscosity, have a significant effect on process productivity, morphology and diameter of the fibers.

Incorporation of a large amount of HAP particles into polymer fibers made them more hydrophilic, which can be useful for tissue engineering applications. These results highlight the potential of using electrospun polymer nonwovens combined with HAP in tissue engineering as materials for bone regeneration. Hydroxyapatite excellently supports bone cell growth and matrix formation. Moreover, the electrospun fiber structure can mimic the natural extracellular matrix (ECM). However, fabrication of stable and durable fibers with HAP requires precise and high control over the electrospinning process, which can be challenging.

Tables


Table 1. List of parameters of the samples investigated in the study

Sample

Polymer concentration [wt%]

Viscosity [mPa∙s]

Average fiber diameter [μm]

Apatite content [wt%]

PCL

15

326

12.2

PCL_HAP_90/10

1,765

8.5

10

PCL_HAP_80/20

1,842

6.0

20

PCL_HAP_70/30

1,887

4.4

30

PLLA

3

1,210

3.8

PLLA_HAP_85/15

1,520

4.6

15

PLLA_HAP_75/25

1,750

6.2

25

PLLA_HAP_60/40

2,200

3.9

40

PCL – poly(ε-caprolactone); PLLA – poly(L-lactic acid); HAP – hydroxyapatite.
PCL_HAP_X/Y – where X is the polymer content (wt%) and Y is the hydroxyapatite content (wt%), e.g., PCL_HAP_90/10 – sample containing 90 wt.% of poly(ε-caprolactone) and 10 wt.% of hydroxyapatite, etc.
Table 2. Selected parameters determined from the differential scanning calorimetry (DSC) curves

Sample

1st heating scan

2nd heating scan

Cooling scan

Tg [°C]

Tcc [°C]

ΔHcc [J/g]

Tg [°C]

Tm [°C]

ΔHm [J/g]

Xc (%)

Tc [°C]

ΔHc [J/g]

PCL

−59.5

−68.8

58.7

74.9

53.9

30.2

−64.3

PCL_HAP_90/10

−59.7

−71.5

58.0

63.1

50.5

31.9

−56.9

PCL_HAP_80/20

−60.2

−71.3

58.6

69.1

62.2

31.9

−56.1

PCL_HAP_70/30

−59.5

−71.5

57.5

51.7

53.2

32.4

−47.8

PLLA

67.1

78.3

28.9

72.7

170.6

45.4

17.5

115.9

5.1

PLLA_HAP_85/15

67.2

81.4

21.6

72.0

170.9

40.5

23.7

116.8

30.4

PLLA_HAP_75/25

66.3

76.1

20.1

73.9

172.6

33.3

18.7

117.7

33.4

PLLA_HAP_60/40

67.6

84.4

6.1

72.6

171.5

35.9

79.5

117.4

35.9

PCL – poly(ε-caprolactone); PLLA – poly(L-lactic acid); HAP – hydroxyapatite.
PCL_HAP_X/Y – where X is the polymer content (wt%) and Y is the hydroxyapatite content (wt%), e.g., PCL_HAP_90/10 – sample containing 90 wt% of poly(ε-caprolactone) and 10 wt% of hydroxyapatite, etc.
Tg – glass transition temperature; Tcc – cold crystallization temperature; ΔHcc – the cold crystallization enthalpy; Tm – melting temperature; ΔHm – the melting enthalpy; Xc – degree of crystallization; Tc – crystallization temperature; ΔHc – the crystallization enthalpy.

Figures


Fig. 1. Scanning electron microscopy (SEM) images of electrospun fibrous scaffolds. A. pure PCL; B. PCL_HAP_90/10; C. PCL_HAP_80/20; D. PCL_HAP_70/30; E. pure PLLA; F. PLLA_HAP_85/15; G. PLLA_HAP_75/25; H. PLLA_HAP_60/40
PCL – poly(ε-caprolactone); PLLA – poly(L-lactic acid); HAP – hydroxyapatite.
Fig. 2. The effect of polymer concentration and filler content on viscosity

References (25)

  1. Liu J, Lin DY, Wei B, Martin DC. Single electrospun PLLA and PCL polymer nanofibers: Increased molecular orientation with decreased fiber diameter. Polymer (Guildf). 2017;118:143–149. doi:10.1016/j.polymer.2017.04.070
  2. Khalili S, Khorasani SN, Razavi SM, Hashemibeni B, Tamayol A. Nanofibrous scaffolds with biomimetic composition for skin regeneration. Appl Biochem Biotechnol. 2019;187(4):1193–1203. doi:10.1007/s12010-018-2871-7
  3. Wu JH, Hu TG, Wang H, Zong MH, Wu H, Wen P. Electrospinning of PLA nanofibers: Recent advances and Its potential application for food packaging. J Agric Food Chem. 2022;70(27):8207–8221. doi:10.1021/acs.jafc.2c02611
  4. Lu Z, Zhang B, Gong H, Li J. Fabrication of hierarchical porous poly (l-lactide) (PLLA) fibrous membrane by electrospinning. Polymer (Guildf). 2021;226:123797. doi:10.1016/j.polymer.2021.123797
  5. Vogt L, Rivera LR, Liverani L, Piegat A, El Fray M, Boccaccini AR. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Mater Sci Eng C Mater Biol Appl. 2019;103:109712. doi:10.1016/j.msec.2019.04.091
  6. Luginina M, Schuhladen K, Orrú R, Cao G, Boccaccini AR, Liverani L. Electrospun PCL/PGS composite fibers incorporating bioactive glass particles for soft tissue engineering applications. Nanomaterials. 2020;10(5):978. doi:10.3390/nano10050978
  7. Cao Y, Han W, Pu Z, et al. Fabrication of hierarchically porous superhydrophilic polycaprolactone monolith based on nonsolvent-thermally induced phase separation. RSC Adv. 2020;10(44):26319–26325. doi:10.1039/D0RA04687F
  8. Behtaj S, Karamali F, Masaeli E, Anissimov Y, Rybachuk M. Electrospun PGS/PCL, PLLA/PCL, PLGA/PCL and pure PCL scaffolds for retinal progenitor cell cultivation. Biochem Eng J. 2021;166:107846. doi:10.1016/j.bej.2020.107846
  9. Li X, Zhang S, Zhang X, Xie S, Zhao G, Zhang L. Biocompatibility and physicochemical characteristics of poly(ε-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Des. 2017;114:149–160. doi:10.1016/j.matdes.2016.10.054
  10. Deng L, Taxipalati M, Zhang A, et al. Electrospun chitosan/poly(ethylene oxide)/lauric arginate nanofibrous film with enhanced antimicrobial activity. J Agric Food Chem. 2018;66(24):6219–6226. doi:10.1021/acs.jafc.8b01493
  11. Sheng D, Li J, Ai C, et al. Electrospun PCL/Gel-aligned scaffolds enhance the biomechanical strength in tendon repair. J Mater Chem B. 2019;7(31):4801–4810. doi:10.1039/C9TB00837C
  12. Fakhrali A, Semnani D, Salehi H, Ghane M. Electrospun PGS/PCLnanofibers: From straight to sponge and spring-like morphology. Polym Adv Technol. 2020;31(12):3134–3149. doi:10.1002/pat.5038
  13. Segala K, Nista SVG, Cordi L, et al. Silver nanoparticles incorporated into nanostructured biopolymer membranes produced by electrospinning: A study of antimicrobial activity. Braz J Pharm Sci. 2015;51(4):911–921. doi:10.1590/S1984-82502015000400017
  14. Shitole AA, Raut PW, Sharma N, Giram P, Khandwekar AP, Garnaik B. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. J Mater Sci Mater Med. 2019;30(5):51. doi:10.1007/s10856-019-6255-5
  15. Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater. 2014;39:95–110. doi:10.1016/j.jmbbm.2014.06.019
  16. Rajzer I. Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J Mater Sci. 2014;49(16):5799–5807. doi:10.1007/s10853-014-8311-3
  17. Doyle SE, Henry L, McGennisken E, et al. Characterization of polycaprolactone nanohydroxyapatite composites with tunable degradability suitable for indirect printing. Polymers (Basel). 2021;13(2):295. doi:10.3390/polym13020295
  18. Venugopal J, Low S, Choon AT, Kumar AB, Ramakrishna S. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. J Biomed Mater Res A. 2008;85A(2):408–417. doi:10.1002/jbm.a.31538
  19. Palamà IE, Arcadio V, D’Amone S, Biasiucci M, Gigli G, Cortese B. Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Sci Rep. 2017;7(1):12672. doi:10.1038/s41598-017-12824-3
  20. Zhang J, Li J, Jia G, et al. Improving osteogenesis of PLGA/HA porous scaffolds based on dual delivery of BMP-2 and IGF-1 via a polydopamine coating. RSC Adv. 2017;7(89):56732–56742. doi:10.1039/C7RA12062A
  21. Szustakiewicz K, Gazińska M, Kryszak B, et al. The influence of hydroxyapatite content on properties of poly(L-lactide)/hydroxyapatite porous scaffolds obtained using thermal induced phase separation technique. Eur Polym J. 2019;113:313–320. doi:10.1016/j.eurpolymj.2019.01.073
  22. Korbut A, Włodarczyk M, Rudnicka K, et al. Three component composite scaffolds based on PCL, hydroxyapatite and L-lysine obtained in TIPS-SL: Bioactive material for bone tissue engineering. Int J Mol Sci. 2021;22(24):13589. doi:10.3390/ijms222413589
  23. Patrício T, Bártolo P. Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng. 2013;59:292–297. doi:10.1016/j.proeng.2013.05.124
  24. Chen J, Deng C, Hong R, Fu Q, Zhang J. Effect of thermal annealing on crystal structure and properties of PLLA/PCL blend. J Polym Res. 2020;27(8):221. doi:10.1007/s10965-020-02206-1
  25. Lee JB, Kim SE, Heo DN, Kwon IK, Choi BJ. In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering. Macromol Res. 2010;18(12):1195–1202. doi:10.1007/s13233-010-1206-5