Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 4.1)
Index Copernicus (ICV 2024) – 125.42
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download original text (EN)

Polymers in Medicine

2023, vol. 53, nr 2, July-December, p. 141–151

doi: 10.17219/pim/174016

Publication type: review

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Piesiak-Pańczyszyn D, Zakrzewski W, Piszko A, Piszko P, Dobrzyński M. Review on fluoride varnishes currently recommended in dental prophylaxis. Polim Med. 2023;53(2):141–151. doi:10.17219/pim/174016

Review on fluoride varnishes currently recommended in dental prophylaxis

Dagmara Piesiak-Pańczyszyn1,A,B,C,D, Wojciech Zakrzewski2,A,B,C,D, Aleksandra Piszko3,B,C,D, Paweł J. Piszko4,B,C,D, Maciej Dobrzyński3,E,F

1 Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, Poland

2 Pre-clinical Research Centre, Wroclaw Medical University, Poland

3 Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Poland

4 Faculty of Chemistry, Department of Polymer Engineering and Technology, Wroclaw University of Science and Technology, Poland

Graphical abstract


Graphical abstracts

Abstract

In dentistry, fluoride compounds play a very important role in the development of teeth hard tissue. They have been modifying the development of the carious process for many years in accordance with the principles of minimally invasive therapy. Studies have confirmed their effectiveness in the prevention and treatment of carious lesions and erosion of deciduous and permanent teeth, as well as in the dentin hypersensitivity treatment. Typically, each varnish consists of 3 basic components, i.e., a resin usually in the form of mastic, shellac and/or rosin, an alcohol-based organic solvent (usually ethanol) and active agents. In the first-generation varnishes, the active agent is fluorine compounds, most often in the form of 5% NaF, while in second-generation varnishes, the composition is further enriched with calcium and phosphorus compounds in the form of CPP-ACP/CPP-ACPF, ACP, TCP, fTCP, CSPS, TMP, CXP, or CaGP. This influences the bioavailability of fluoride in the oral environment by increasing both its release from the product and its subsequent accumulation in enamel and plaque, promotes more efficient closure of dentinal tubules, and facilitates pH buffering in the oral cavity.

Key words: dental caries, fluoride release, fluoride varnishes

Introduction

Fluoride is a cyclic element widespread in nature, which, due to its high electronegativity and activity, does not occur in elemental form but only in the form of compounds, reacting with almost all other elements, noble gases, and organic and inorganic compounds.1 It belongs to micronutrients, and can be found in supportive tissue within an organism, in the hard tissues of teeth, in the skin, and in hair. In addition, as an element with high biological activity, it often acts as an inhibitor or, less frequently, an activator of many enzymes, affecting the course of protein biosynthesis processes, carbohydrate metabolism or lipid metabolism.2

Fluoride-containing compounds are widely used in minimal invasive therapies in contemporary dentistry. Their effectiveness in preventing caries end erosion of primary teeth and treating hypersensitivity in permanent teeth has been confirmed in many reports.3, 4, 5, 6, 7 The role of varnishes is depicted in Figure 1. Furthermore, it is suggested that continuous, repeatable fluoride delivery over time is most advantageous for dental treatment.8, 9, 10, 11, 12 It turns out that the amount of fluoride in the fluids flowing around the teeth in the experimental model above 0.03 ppm already initiates a cariostatic effect.

Fluoride varnishes are materials that contain the highest content of this element and are intended for professional use in dental practices. They facilitate prolongation of contact between tooth tissues and fluoride. Their use in dentistry was first reported in 1964 by German researcher Hans Joachim Schmidt. He used 2% sodium fluoride in an alcoholic solution of natural resin as an alternative to preparations that were aqueous. Clinical studies confirming its effectiveness were published 4 years later,13 resulting in the introduction of the first commercial fluoride varnish to the markets under the name of Duraphat (Woelm Pharma Co., Eshwege, Germany) containing 5% NaF. Promising results contributed to the introduction to the market of newer formulations in subsequent years, i.e., in 1975 Fluor Protector (Vivadent, Schaan, Liechtenstein) with 0.9% difluorosilane, in 1984 Duraflor (AMD Medicom Inc., Montreal, Canada) with 5% NaF, or in 1986 Bifluorid 12 (Voco Chemie GmbH, Cuxhaven, Germany) with 6% NaF.14 Approved by the FDA in 1994, they initially functioned as hypersensitivity drugs, and over the years have become a permanent part of dental practice. Numerous meta-analyses showed their therapeutic effectiveness in reducing caries at 46% for permanent dentition and 33% for deciduous dentition, provided they were applied 2–4 times a year.15, 16, 17, 18, 19 Similar results were obtained in a study in which the use of fluoride varnish as early childhood caries prophylaxis reduced caries by 25–45%.20, 21

Structure of fluoride varnishes

Fluoride varnishes are available on the market in a wide variety, differing in chemical composition, particle shape and size, consistency and viscosity, which, according to some researchers, affects different fluoride release patterns.22, 23, 24, 25, 26, 27, 28 Typically, each varnish consists of 3 basic components, i.e., a resin (often in the form of mastic), shellac and/or rosin in an organic solvent (usually ethanol), and of active agents involved in the remineralization process.29, 30 Shellac and mastic are responsible for the formation of an elastic and hard layer on teeth, which prevents rapid dissolution in saliva. On the other hand, rosin obtained from the oleoresin of dead pine wood or talc oil improves the liquidity of the preparation, which translates into better adhesion to enamel, longer contact time with the tooth surface, the ability to flow onto hard-to-reach surfaces and prolonged release of fluoride ions. In turn, the polyvinyl acetate polymer used in varnishes with complex of casein phosphopeptide and amorphous calcium phosphate (CPP-ACP) shows very good solubility in aqueous solutions, which can directly affect the dynamics of fluoride ion release.31 Alcohol, undergoing rapid evaporation after exposure to air, leaves free volume, which causes easier contact of the varnish with water and accelerates the release of fluoride.32 The active agents of the first generation of varnishes are usually in the form of neutral or acidified 5% NaF containing 2.26% fluoride ions (22,600 ppm of fluoride), 1% difluorosilane containing 0.1% fluoride ions (1,000 ppm of fluoride) or 6% NaF combined with 6% CaF2 (56,300 ppm of fluoride). TiF4-containing varnishes can also be found, while they are still seen as experimental formulations requiring continued in vitro and in vivo studies.33, 34, 35 In the literature, the formation of calcium fluoride after application of 2% neutral NaF has been compared with acidified fluoride preparations, which evidently showed an advantage for the latter in terms of the amount of CaF2 deposited on the enamel surface.36, 37 This is explained by increased affinity of the released fluoride to the enamel in an acidic environment compared to neutral pH. According to many researchers,23, 38, 39, 40, 41 in the oral environment, the amount of available calcium and phosphate ions is insufficient to bind the large amounts of fluoride obtained after fluoride varnish application. For this reason, so-called second-generation varnishes enriched in Ca2+ and PO43− ions in the form of, e.g., complex of casein phosphopeptide and amorphous calcium phosphate (CPP-ACP, CPP-ACPF), amorphous calcium phosphate (ACP), tricalcium phosphate (TCP – tricalcium phosphate – Ca3(PO4)2), active form of tricalcium phosphate (fTCP), sodium-calcium phosphosilicate (CSPS or so-called bioactive glass), sodium trimetaphosphate (TMP), xylitol-coated calcium phosphate (CXP), or calcium glycerophosphate (CaGP).28, 35, 42, 43, 44, 45 Their presence is believed to have a significant effect on the bioavailability of fluoride in the oral environment by increasing its release from the product, facilitating its accumulation in enamel and plaque, closing dentinal tubules more effectively, and buffering oral pH. However, there is still no conclusive evidence as to which of the aforementioned compounds works best.25, 26, 28, 37, 39, 42, 43, 45, 46, 47, 48, 49, 50 According to Karlinsey et al.,51 the addition of TCP increases the effectiveness of fluoride without compromising its bioavailability. This is explained by the fact that during the manufacturing process, a protective fumar barrier is formed around the Ca2+ ions, preventing the ions from being deactivated during storage. Contact limited to saliva causes the barrier to dissolve, resulting in the release of both calcium and fluoride ions, the latter in significantly higher amounts compared to non-enriched varnishes.48, 52, 53 Research conducted by Alamoudi et al.54 showed an increase in the microhardness of the enamel surface treated with varnish from TCP, and Elkassas et al.52 reported greater remineralization efficiency following reducing its roughness. Another available compound is the CPP-ACP/CPP-ACPF complex, which includes a milk-derived protein that is a source of readily available calcium ions and phosphate ions. Casein phosphopeptides (CPP), with the help of phosphoserine sequences, stabilize amorphous calcium phosphate (ACP) and, after contact with saliva, help it attach to the surface of enamel or plaque.28, 45, 55 This was confirmed by in vitro research38, 56 showing CPP-ACP nanocomplexes attached to supragingival plaque, as well as to the surface of Streptococcus mutans bacterial cells by means of electron microscopy. By buffering the pH of the biofilm, free Ca2+ and PO42– ions dissociate, thus not only acting as a reservoir of bioavailable ions, but also maintaining the supersaturated state of saliva relative to the surface of the enamel.57 Some researchers believe that the enrichment of the varnish with the CPP-ACP complex is the best technology that allows a stable combination of high concentrations of calcium, phosphate and fluoride ions with the tooth surface and plaque.23, 38, 39, 43, 50, 58, 59, 60, 61 In addition, Bakry et al.62 observed that the application of MI Varnish (GC, Tokyo, Japan) with CPP-ACP complex is followed by a significant reduction in demineralization and an increase in enamel microhardness. This was confirmed by the study by Świetlicka et al., in which it was shown that 24 h after application, fluoride varnish with CPP-ACP induced partial regeneration of the previously damaged enamel surface, activating the formation of a new honeycomb-like layer.63 On the other hand, according to Yapp et al.,64 a better solution is the introduction of CXP (xylitol-coated calcium and phosphate) ions into the varnish, i.e., calcium and phosphate ions coated with xylitol and suspended in a permeable resin, which enables their uniform and prolonged release and enhances the antimicrobial effect. According to the manufacturers,65 such an enriched varnish can provide 4 times more fluoride compared to others, with the maximum release occurring in the first 4 h after application.

In addition to these 3 main ingredients, manufacturers may also add colorants, sweeteners (e.g., saccharin sodium), stabilizing and adhesion-enhancing agents,35 as well as xylitol with antimicrobial properties, chlorhexidine with antimicrobial and remineralizing properties, or arginine and chlorhexidine with antibacterial, remineralizing and pH stabilizing properties.43

Reviewing the literature, we can find new experimental varnishes that are undergoing clinical evaluation all the time. Pichaiaukrit et al. evaluated in 2019 in vitro the effect of chitosan, a linear copolymer of D-glucosamine and N-acetyl-D-glucosamine, on fluoride release.66 Comparing fluoride varnishes differing only in the amount of chitosan, it was found that the increase in fluoride release was related to the increase in polymer concentration. The highest values were obtained after 1 h, which significantly decreased after 2 h after application, with slow but steady fluoride release continuing up to 6 h. Unfortunately, fluoride varnishes with chitosan were cytotoxic to human gingival fibroblasts. Table 1 lists examples of first- and second-generation fluoride varnishes with information on their composition.

Mechanism of action of varnishes and fluoride

Fluoride ions released by fluoride varnishes have a direct effect on the processes occurring on the surface of the enamel in the oral environment. More specifically, they inhibit demineralization, promote remineralization and interfere with the adhesion and metabolism of carious bacteria.12, 14, 15, 29, 44, 73, 74

Two types of reactions of fluoride with enamel occur depending on the concentration of the preparation used.75 At low concentrations of no more than 50 ppm, fluorohydroxyapatite is formed with simultaneous acidification of the environment, which follows the reaction described below (Reaction 1).

Ca10(PO4)6(OH)2 + F + H+ Ca10(PO4)6(OH)F + H2O

The fluorohydroxyapatite thus formed is very strongly bound to the outermost layers of the enamel. In the literature, it is often referred to as bonded fluoride, which can only be lost if the entire tissue is abraded or completely dissolved. If the concentration of fluoride is greater than 100 ppm on the enamel surface, small granules of calcium fluoride form in the plaque and acquired membrane, perceived as loose, unbound fluoride,14, 37, 40, 42, 43, 56, 74, 76, 77, 78 as illustrated by the reaction below (Reaction 2).

Ca10(PO4)6(OH)2 + 20F + 8H+
10CaF2 + 6HPO42– +2H2O

Fluorides react with hydroxyapatites of the enamel by replacing hydroxide ions. As a result of this reaction, some part of hydroxyapatites transform into fluorapatites, which have better crystalline properties, and are more acid-resistant. In the apatite, strong ionic bonds between fluoride and the amine group of the organic enamel matrix are formed, which contributes to greater stability of fluorapatite crystals. Fluoride may also react with apatite by stimulating the growth of fluorapatite crystals. Moreover, it may cause apatite dissolution and forming calcium fluoride. The formation and stimulation of fluorapatite growth may occur during frequent exposure to low fluoride concentration in the solutions (below 0.1%). The role of fluoride delivered through application of varnish at the tooth’s surface is showed in Figure 2.

The bacteriostatic and/or bactericidal effect is achieved by reducing plaque deposition by disrupting bacterial adherence to the acquired membrane and altering bacterial metabolism by inhibiting enolase activity, reducing glucose transport into the cell and storage, interfering with the synthesis of extracellular and intracellular bacterial polysaccharides, decreasing the amount of lactic acid produced, decreasing the activity of cellular phosphatases responsible for the hydrolysis of phosphate esters, and disrupting the transport and accumulation of cations in cells.9, 37, 74

Fluoride varnish application involves the use of high concentrations of fluoride salts suspended in a resin that allows them to persist for some time on the tooth surface. The basic technology involved in the construction of F varnishes is to use very high concentrations of fluoride salts, usually at 50,000 ppm NaF (22,600 ppm of fluoride) in a resin varnish that stays on the tooth surface for several hours. During the dwell time, saliva washes over the varnish and dissolves the fluoride salts, allowing fluoride ions to diffuse out of the varnish and be absorbed into the fluoride reservoirs in oral fluid tissues, plaque and teeth. Over time, fluoride ions are re-released from these reservoirs.44 Released fluoride ions accumulate in higher concentrations (above 100 ppm) both on the enamel surface and in the enamel itself, as well as in plaque. The presence of fluoride attracts calcium and phosphate ions from saliva or from dissolved hydroxyapatite, forming small calcium fluoride crystals with embedded phosphates.14, 37, 39, 40, 42, 43, 44, 74, 76, 77, 78 Since pure CaF2 crystal is cubic rather than spherical, the resulting spherical deposits are described as calcium fluoride-like compounds, which on the one hand block acid diffusion, and on the other hand form a fluoride reservoir that is stable and insoluble in neutral pH environments. Phosphate ions increase its solubility compared to pure CaF2.24, 79 With a decrease in pH, the membrane coating is dissolved and the release of fluoride ions and their incorporation into the enamel structure occurs. A decrease in fluoride concentration below 100 ppm and an increase in pH results in saturation of the enamel relative to the surrounding fluid and inhibition of the process described above.12, 29, 37, 40, 42, 44, 53, 74, 76, 80 Following the application of the varnish, more fluoride is retained on the demineralized rather than the healthy surface, contributing to the activation of repair processes in the enamel.3, 81

The formation of CaF224, 25, 34, 40, 50, 67, 82, 83 is influenced by fluoride ions at sufficiently high concentrations, as well as calcium and phosphate ions presence in the oral cavity.23, 38, 40, 41, 56 According to Attin et al.,84 the supply of these ions in second-generation varnishes results in the deposition of larger amounts of calcium fluoride on the enamel surface, which in turn enhances the therapeutic effect.23, 38, 48, 49, 60, 78, 85, 86, 87, 88, 89, 90, 91, 92

Clinical use of fluoride varnishes: indications, scheme, contraindications, and method of application

Varnish is defined as a professionally, topically applied fluoride compound. Its topical application is meant to slow down the release of active substances, including oxidative agents or chlorhexidine.93 Varnishes have properties that facilitate their adhesion to the tooth surface. In comparison to sealants, fluoride varnishes are claimed to be easier to apply. In contrast to the multi-step technique of sealant application, varnishes can be successfully applied without etching or overdrying the surface of the tooth.94

Application and spreading of fluoride varnishes on tooth surfaces is usually performed with small brushes or cotton pellets. In the process of application, the clinician applies around 0.30–0.75 mL of varnish per single tooth. Additionally, the clinician may soak the dental floss in a varnish and apply it between teeth to cover hard to reach interdental spaces. Prolonged adhesion to the enamel enables the varnish to constantly release the fluoride, lowering long-time sensitivity and vulnerability of the tooth toward bacterial activity and generally caries.29 The whole process should take about 1–4 min, which is dependent on number of teeth that need to be covered. The indications after successful application of fluoride varnish are as follows: Patient should avoid eating for around 2 h and in order to allow varnish to remain longer on the tooth surface, tooth brushing should be avoided on the same day, after which it should be continued. Fluoride varnishes have no age restrictions. For moderate risk, they should be applied twice a year, while for high risk up to 4 times. Disposable doses of fluoride varnish containing 5% NaF (22,600 ppm of fluoride) are 0.10 mL for infants and 0.25 mL for children over 1 year old. Contraindications to the use of fluoride varnish include bronchial asthma, stomatitis and necrotizing ulcerative gingivitis.

The use of fluoride varnishes in dentistry is now recommended by international dental organizations and societies, e.g., European Academy of Paediatric Dentistry (EAPD), American Dental Association (ADA), American Academy of Pediatric Dentistry (AAPD), IAPD International Association of Paediatric Dentistry (IAPD), World Dental Federation (FDI), or World Health Organization (WHO).95, 96, 97, 98, 99, 100, 101

According to ADA experts, in adults at increased risk of developing caries, including root caries, professional prophylaxis should include the application of 2.26% fluoride varnish 2–4 times a year or the use of acidified fluorophosphate gel (1.23%) 2–4 times a year.102 Fluoride varnishes possess many advantages which make it one of the best ways of topical application. In general, they are considered safe and acceptable.103 Their prolonged, slow release of fluoride allows teeth to be exposed to higher doses without the risk of overdose. The application is fast and simple, without any need of additional drying. Prior teeth prophylaxis is not mandatory before application. Rapid setting time makes it an ideal material even for younger children or patients with gagging reflux.14 Indications of topical fluoride varnish applications are mainly dental prophylaxis treatment of incipient caries or root caries. Hypersensitivity of teeth or roots is another indicator where fluoride varnish can act as a pain relief. Varnishes are indicated for use in patients with bad hygiene that has no prognosis of getting better, including handicapped and senile patients or children. They are particularly recommended for children using orthodontic appliances, adults using prosthetic restorations and patients with decreased salivary secretion.104

Among the contraindications, there are confirmed statuses like bronchial asthma, stomatitis or necrotizing ulcerative gingivitis. Each applied dose of a varnish contains up to 0.2 g of ethanol, and therefore usage during pregnancy or lactation is not recommended. Application of fluoride varnish may occasionally cause temporary discoloration of teeth after contact with fluoride, lasting around 24 h after the outer layer of varnish is removed with brushing.29 There is a possibility of allergy to fluoride varnish, which can cause a burning sensation in the mouth, eventually causing dermatitis or stomatitis if the varnish had contact with either skin tissue or oral mucosa. A lot of varnishes, e.g., Duraphat® (Colgate Oral Care, Sydney, Australia), contain rosin. Children who were hospitalized during previous 12 months due to severe asthma or allergies or who are allergic to patches may be at risk of an allergic reaction to rosin. In such cases, usage of varnish without rosin should be considered (approved for caries prevention in the UK) or alternative age-appropriate fluoride preparations should be suggested (e.g., fluoride mouthwash or toothpaste with a higher fluoride concentration). Likewise, fluoride varnishes containing the CPP-ACP complex are not recommended for patients allergic to milk. Swallowing the topical fluoride varnish may result in elevation of plasma fluoride level, yet such increase is lower than when compared to fluoride gels.105

Discussion

The effectiveness of the cariostatic action of fluoride ions can be attributed, on one hand, to their multidirectional effect on the carious process.106, 107, 108, 109, 110 On the other hand, it affects the hard tissues of the tooth from mineralization during development to external protection in the oral environment. Fluoride released from fluoride varnishes increases its concentration in both saliva and plaque, interacts with enamel hydroxyapatites, interferes with bacterial metabolism, and accumulates on the tooth surface in the form of CaF2. These deposits, according to Øgaard et al.,24 could be observed in vitro for up to 4 months after application, while in vivo, due to the processes involved in chewing, swallowing, speech, and individual hygiene procedures, the time period of CaF2 deposit removal was definitely shorter when compared to in vitro observations, reaching up to a maximum of 3 days.111 According to Tenuta et. al.,77 it is the amount of calcium fluoride formed that will have a direct impact on the long-term maintenance of higher fluoride levels in the mouth and the effective long-term anti-carious effect. Other researchers40, 67, 82, 83 emphasize the importance of calcium and phosphate ions present in the mouth as a factor that has a significant impact on the amount of fluoride captured and bound.24, 25, 34, 50

Despite a very large number of studies conducted both in vitro and in vivo, there is still no clear opinion regarding the choice of the best fluoride varnish. Numerous experiments have shown that all varnishes of both the first and second generation applied to tooth surfaces release fluoride ions and cause them to accumulate in the enamel and plaque.23, 25, 46 In in vitro studies, fluoride release was greatest during the first few hours after application, then decreased over time, with some investigators observing this on the 1st day after application46, 69, 112 and others within 3 weeks.25, 50 The highest increase in fluoride was usually measured either after the 1st46, 112 or the 2nd hour after application.25, 113, 114 Cumulative fluoride release, even for varnishes containing the same amount of fluoride, was not uniform and was likely due to differences in formulation, consistency and viscosity of the formulations.22, 23, 24, 25, 26, 27, 28, 115 Shen and Autio-Gold115 obtained lower cumulative fluoride release in artificial saliva from Duraphat® (Colgate Oral Care) compared to Duraflor® (AMD Medicom Inc., Montreal, Canada) and CavityShield® (3M ESPE Dental Products, St. Paul, USA) (all 3 varnishes with 5% NaF), but for all, the decrease in ion emission between 7 h and 213 h of the experiment was similar.

Under in vivo conditions, the decrease in fluoride release was faster due to the effects of saliva on fluoride leaching and retention, as well as due to cheek and tongue muscle work, chewing, diet acidity, or hygiene treatments, but the pattern overlapped with in vitro studies. Most fluoride was released during the first few hours after application; in some studies,46, 112 it was the 2nd hour of the study, and in others the first 4 h.36, 58 A study by Piesiak-Pańczyszyn and Kaczmarek46 showed a significant increase in salivary fluoride release during the first 2 h after application, which decreased with time, with the highest increase in the 1st hour – more than 15 times the initial value, in the 2nd hour slightly less, representing 9 times the initial level, and decreasing in the 168th hour of the experiment to a value oscillating near the initial value and corresponding to the cariostatic level. Comparing first- and second-generation varnishes with each other, it turns out that opinions on their effectivness and the factors affecting them are divided.45 Based on data from the literature, one can find both works that, evaluating the amount of fluoride ions released, as well as the composition and mechanical properties of varnish-treated enamel surfaces, showed the superiority of second-generation varnishes over the first one,23, 38, 45, 46, 48, 49, 60, 78, 85, 86, 87, 88, 89, 90, 91, 92, 112 as well as those that did not show these differences28, 76, 78 or even studies reporting the higher effectiveness of non-enriched varnishes.23, 42, 53

In a number of comparative studies, the best performing varnish was the second-generation one containing the CPP-ACP complex, for which the highest cumulative fluoride release and the largest increases in released fluoride over time were recorded.23, 46, 85, 112 In addition, it is also noteworthy that this release proceeded most dynamically in the initial phase, causing the release of more than 90% of the total available amount of fluoride applied in the varnish in a fairly short time (up to 24 h).46, 112 This was confirmed in a laboratory study performed by the ADA in 2015.116 This study considered 7 varnishes, from which only 2: – MI Varnish (GC Corporation, Tokyo, Japan) (with CPP-ACP complex) and Prevident® varnish (Colgate Oral Pharmaceuticals, Inc., Canton, USA) (with 5% NaF and xylitol) – released almost 100% of the available fluoride within the first 6 h after application, while the other 5 reached levels between 29% and 53%. In contrast, Milburn et al.50 showed in vitro that CXP-containing Embrace varnish (Pulpdent, Watertown, USA) released as much as 10-fold more fluoride in the first 4 h after application than Duraphat® (Colgate Oral Care), Enamel Pro Varnish (Premier Dental Products, Plymouth Meeting, USA) and Vanish (3M ESPE Dental Products). There are other papers that show higher amounts of fluoride ions released from varnishes with amorphous calcium phosphate (ACP).25, 26, 117 In a study by Jablonowski et al.,25 highest cumulative release of fluoride and highest rate of release were recorded for the Enamel Pro varnish with the addition of ACP for timeframe up to 3 weeks after application. Limit of detection in the referenced work oscillated around 4th week of the experiment for Enamel Pro Varnish (Premier Dental Products) compared to Duraphat® (Colgate Oral Care) and Clinpro XT (3 M ESPE Dental Products) varnishes, which reached limit of detection after approx. 6–7 weeks. It translates to a conclusion that varnish containing ACP in relatively short time released all available fluoride, causing its high concentration in the initial phase, which is considered critical.

In the case of second-generation varnishes, fluoride release is often observed in 2 phases, which was decribed by Pichaiaukrit et al.66 The phase of initial rapid release of large amounts of fluoride usually lasts until the first 4 h after application, depending on the varnish; between 12 h and 24 h, a steady, slower increase in fluoride commences, reaching a plateau.34, 46, 50, 112 In line with previous opinions26, 44 that a sufficiently high initial concentration of fluoride allows the formation of more calcium fluoride on the enamel surface and facilitates its binding to tooth tissues, and because the retention time of the tooth varnish is limited under in vivo conditions, such fluoride release characteristics can have a pronounced impact on the therapeutic efficacy of the applied agent. Some researchers also noted the highly significant effect of medium pH on the amount of fluoride ions released.46 In the studies by Piesiak-Pańczyszyn and Kaczmarek46 and by Piesiak-Pańczyszyn et al.,112 the level of fluoride released for both first (Duraphat®; Colgate Oral Care) and second-generation varnishes: MI Varnish (GC Corporation) and Embrance Varnish (Pulpdent, Watertown, USA) was significantly lower in neutral environments than in pH = 4 and pH = 5 environments, as confirmed in post hoc tests. In addition, regression analysis showed that the acidity of the artificial saliva had a greater effect on fluoride ion release than time since application. On the other hand, Ten Cate et al.,37 evaluating the enamel surface after application of 2% neutral NaF compared to acidified fluoride preparations, found the presence of significantly higher amounts of CaF2 in the latter case. Similar conclusions were obtained in the Fluor Protector study.36, 37

Fluoride varnishes, according to current knowledge, are the safest and most effective means in the treatment and prevention of tooth decay and hypersensitivity.118 Despite the fact that they contain almost twice as much fluoride as the gels and foams used, and more than 15 times as much fluoride as everyday toothpastes, they do not entail health risk.119 The most commonly used fluoride varnishes in dentistry are those with concentrations of 5% NaF, which is equivalent to 22,600 ppm of fluoride.102, 119, 120 Indeed, it has been shown that the maximum fluoride concentration in serum after application of varnish with 5% NaF in young children is only 1/7 of the maximum values found after application of APF gel with 1.25% NaF.121, 122 This is due to the ability to apply the product very precisely to the teeth, as well as its adherence to the enamel surface, which prevents unintentional swallowing.122 An analysis of the number of adverse events reported to the U.S. Food and Drug Administration (FDA) confirmed that the use of fluoride varnish should be considered safe in the systemic aspect.123 On the other hand, reports of varnish cytotoxicity appearing in the literature draw attention. Due to the close contact of fluoride varnish with enamel, dentin or adjacent soft tissues including the gingival mucosa, it is necessary to rule out cytotoxicity prior clinical use. Evaluation of the possible cytotoxic effect on human tissues caused by fluoride varnishes is important for the health of oral cavity tissues.14, 124, 125, 126

Biocompatibility of materials that are prepared to be used clinically in dentistry is evaluated using primary human cells, including fibroblast cells or odontoblasts cells; e.g., Sengun et al.127 and Hoang-Dao et al.128 confirmed evaluating cytotoxic effects on primary gingival fibroblasts, as well as pulp fibroblasts from dentin slice, due to the fact that both of them are directly exposed during the procedure of fluoride varnish application. In such evaluations, it is extremely important to determine the cytotoxicity of a specific agent in vitro. Cytotoxicity can be properly measured only when there is direct contact between the specific material and gingival cells. Hoang-Dao et al.128 confirmed that toxicity of given material is generally lower on dentin slice when compared to gingival fibroblasts. It can be explained by the buffering capacity of dentin.129 There is also additional risk of swallowing fluoride varnishes, which should be avoided because of renal toxicity risk.18 Moreover, it is very important to follow the clinician’s recommendations regarding the dosage of fluoride varnishes. Prolonged inappropriate effects of fluoride varnishes on soft tissues in the oral cavity can cause, although rare and preventable, acute topical toxicity involving oral mucosa irritation.130, 131

Conclusions

Despite many studies conducted both in vitro and in vivo, we still do not know all the mechanisms affecting the effect of fluoride on dental hard tissues, nor are we able to identify all the relevant variables that may intensify or limit this effect. In addition, in light of emerging information about the local negative effects of fluoride varnishes on soft tissues, it is necessary to continue experiments to maximize efficacy and safety.

Tables


Table 1. Examples of commercially available fluoride varnishes with respect to their manufacturers and composition

Fluoride varnish

Manufacturer

Active ingredient

Fillers

References

Colgate® Duraphat Varnish – single dose

Colgate Oral Care, Sydney, Australia

5% NaF

30–60% colophonium, 10–30% ethanol, flavor

[67, 68]

MiVarnish™

GC, Tokyo, Japan

5% NaF

30–50% polyvinyl acetate, 10–30% hydrogenated rosin, 20–30% ethanol, 1–5% CPP-ACP, 1–5% silicon dioxide, flavor

[43, 62]

EmbranceVarnish™

Pulpdent, Watertown, USA

5% NaF

CXP – xylitol-coated calcium and phosphate, 10–30% ethanol

[64]

Clinpro White Varnish

3 M ESPE, St. Paul, USA

5% NaF

30–75% pentaerythritol glycerol ester of colophony resin, 10–15% n-hexane, 1–15% ethyl alcohol, 1–5% sodium fluoride, 1–5% flavor enhancer, 1–5% thickener, 1–5% food grade flavor, <5% modified tricalcium phosphate

[23]

Mirafluorid

Hager & Werken, Duisburg, Germany

0.12%NaF

cetylaminehydrofluoride

bis(hydroxyethyl)-aminopropyl-

N-hydroxyethyl-octadecyl-amindihydrofluoride

water-soluble polymer

[67]

Fluor Protector

Vivadent, Schaan, Liechtenstein

0.1% difluorosilan

polyurethane-based transparent resin, ethyl acetate and isoamyl opropionate solution

[69]

Fluor-Opal

Ultradent, South Jordan, USA

5% NaF

ethanol, methyl salicylate, hydrogenated resin

[49]

Bifluorid 12

Voco Chemie GmbH, Cuxhaven, Germany

2.71% as 6%NaF and 2.92% as 6% CaF2

ethyl acetate, silicates, flavors

[70]

Enamel Pro

Premier Dental Products, Plymouth Meeting, USA

5% NaF

amorphous calcium phosphate (ACP), ethanol

[71]

Novamin

NovaMin® Technology Inc. GlaxoSmithKline, Alachua, USA

5% NaF

calcium sodium phosphosilicate (CSPS), ethanol

[72]

Figures


Fig. 1. The role of fluoride varnish applied at the tooth’s surface
Fig. 2. The role of fluoride delivered by application of varnish at the tooth’s surface

References (131)

  1. Lech T. Fatal cases of acute suicidal sodium and accidental zinc fluorosilicate poisoning: Review of acute intoxications due to fluoride compounds. Forensic Sci Int. 2011;206(1–3):e20–e24. doi:10.1016/j.forsciint.2010.06.027
  2. Ozsvath DL. Fluoride and environmental health: A review. Rev Environ Sci Biotechnol. 2009;8(1):59–79. doi:10.1007/s11157-008-9136-9
  3. Benson PE, Parkin N, Dyer F, Millett DT, Furness S, Germain P. Fluorides for the prevention of early tooth decay (demineralised white lesions) during fixed brace treatment. Cochrane Database Syst Rev. 2013;2013:CD003809. doi:10.1002/14651858.CD003809.pub3
  4. Twetman S, Keller MK. Fluoride rinses, gels and foams: An update of controlled clinical trials. Caries Res. 2016;50(Suppl 1):38–44. doi:10.1159/000439180
  5. Wong MCM, Clarkson J, Glenny AM, et al. Cochrane reviews on the benefits/risks of fluoride toothpastes. J Dent Res. 2011;90(5):573–579. doi:10.1177/0022034510393346
  6. Marinho V. Cochrane fluoride reviews: An overview of the evidence on caries prevention with fluoride treatments. Fac Dent J. 2014;5(2):78–83. doi:10.1308/rcsfdj.2014.5.2.78
  7. Walsh T, Worthington HV, Glenny AM, Marinho VC, Jeroncic A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst Rev. 2019;2019:CD007868. doi:10.1002/14651858.CD007868.pub3
  8. Haugejorden O, Magne Birkeland J. Analysis of the ups and downs of caries experience among Norwegian children aged five years between 1997 and 2003. Acta Odontol Scand. 2005;63(2):115–122. doi:10.1080/00016350510019784
  9. Olczak-Kowalczyk D, Mielczarek A, Jackowska T, et al. Fluoride agents in the prevention and treatment of dental caries and erosion in children, adolescents and adults: Recommendations of Polish Experts. Update of recommendations: Individual fluoride prevention in children and adolescents – recommendations of Polish Experts [in Polish]. Nowa Stomatol. 2022;27(2):35–59. doi:10.25121/NS.2022.27.2.35
  10. Bonetti D, Clarkson JE. Fluoride varnish for caries prevention: Efficacy and implementation. Caries Res. 2016;50(Suppl 1):45–49. doi:10.1159/000444268
  11. Fejerskov O, Nyvad B, Kidd EAM, eds. Dental Caries: The Disease and Its Clinical Management. 3rd ed. Chichester, UK: John Wiley & Sons Inc; 2015. ISBN:978-1-118-93582-8.
  12. Olczak-Kowalczyk D, Borysewicz-Lewicka M, Adamowicz-Klepalska B, Jackowska T, Kaczmarek U, Kaczmarek U. Consensus statement of Polish experts on individual caries prevention with fluoride in children and adolescents. Nowa Stomatol. 2016;21(1):47–73. doi:10.5604/14266911.1199068
  13. Heuser H, Schmidt H. Zahnkariesprophylaxe durch Tiefenimprägnierung des Zahnschmelzes mit Fluor-Lack. Stoma. 1968;21:91–100.
  14. Chu CH, Lo ECM. A review of sodium fluoride varnish. Gen Dent. 2006;54(4):247–253. PMID:16903196.
  15. Azarpazhooh A, Main PA. Fluoride varnish in the prevention of dental caries in children and adolescents: A systematic review. J Can Dent Assoc. 2008;74(1):73–79. PMID:18298889.
  16. Carvalho DM, Salazar M, Oliveira BHD, Coutinho ESF. Fluoride varnishes and decrease in caries incidence in preschool children: A systematic review. Rev Bras Epidemiol. 2010;13(1):139–149. doi:10.1590/S1415-790X2010000100013
  17. Marinho V. Cochrane reviews of randomized trials of fluoride therapies for preventing dental caries. Eur Arch Paediatr Dent. 2009;10(3):183–191. doi:10.1007/BF03262681
  18. Marinho V, Worthington HV, Walsh T, Clarkson JE. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2013;2013:CD002279. doi:10.1002/14651858.CD002279.pub2
  19. Strohmenger L, Brambilla E. The use of fluoride varnishes in the prevention of dental caries: A short review. Oral Dis. 2008;7(2):71–80. doi:10.1034/j.1601-0825.2001.70202.x
  20. Autio-Gold JT, Courts F. Assessing the effect of fluoride varnish on early enamel carious lesions in the primary dentition. J Am Dent Assoc. 2001;132(9):1247–1253. doi:10.14219/jada.archive.2001.0367
  21. Weintraub JA, Ramos-Gomez F, Jue B, et al. Fluoride varnish efficacy in preventing early childhood caries. J Dent Res. 2006;85(2):172–176. doi:10.1177/154405910608500211
  22. Virupaxi SG, Roshan N, Poornima P, Nagaveni N, Neena I, Bharath K. Comparative evaluation of longevity of fluoride release from three different fluoride varnishes: An in vitro study. J Clin Diagn Res. 2016;10(8):ZC033–ZC036. doi:10.7860/JCDR/2016/19209.8242
  23. Cochrane N, Shen P, Yuan Y, Reynolds E. Ion release from calcium and fluoride containing dental varnishes. Aust Dent J. 2014;59(1):100–105. doi:10.1111/adj.12144
  24. Øgaard B. The cariostatic mechanism of fluoride. Compend Contin Educ Dent. 1999;20(1 Suppl):10–17; quiz 34. PMID:11908400
  25. Jablonowski BL, Bartoloni JA, Hensley DM, Vandewalle KS. Fluoride release from newly marketed fluoride varnishes. Quintessence Int. 2012;43(3):221–228. PMID:22299122.
  26. Ritwik P, Aubel J, Xu X, Fan Y, Hagan J. Evaluation of short term fluoride release from fluoride varnishes. J Clin Pediatr Dent. 2012;36(3):275–278. doi:10.17796/jcpd.36.3.q304488478w52334
  27. Castillo JL, Milgrom P, Kharasch E, Izutsu K, Fey M. Evaluation of fluoride release from commercially available fluoride varnishes. J Am Dent Assoc. 2001;132(10):1389–1392. doi:10.14219/jada.archive.2001.0053
  28. Shen P, Bagheri R, Walker G, et al. Effect of calcium phosphate addition to fluoride containing dental varnishes on enamel demineralization. Aust Dent J. 2015;61(3):357–365. doi:10.1111/adj.12385
  29. Baik A, Alamoudi N, El-Housseiny A, Altuwirqi A. Fluoride varnishes for preventing occlusal dental caries: A review. Dent J. 2021;9(6):64. doi:10.3390/dj9060064
  30. Wagner J, Kawamoto A. Fluoride varnish compositions including an organo phosphoric acid adhesion promoting agent. US patent US20130149391A1. July 10, 2014. https://patents.google.com/patent/US20130149391A1/en.
  31. Kolter K, Schönherr M, Gebert S, Meyer-Böhm K, Maschke A. Pharmaceutical formulation for the production of rapidly disintegrating tablets. US patent US20100178349A1. September 10, 2019. https://patents.google.com/patent/US20100178349A1/en.
  32. Wang W, Xie Q, Xu T, Wang Q, Malmstrom HS, Ren YF. Fluoride release and anti-erosive effects of dentifrices containing PVM/MA copolymers. J Dent. 2013;41(2):148–154. doi:10.1016/j.jdent.2012.10.013
  33. Levy FM, Rios D, Buzalaf MAR, Magalhães AC. Efficacy of TiF4 and NaF varnish and solution: A randomized in situ study on enamel erosive–abrasive wear. Clin Oral Invest. 2014;18(4):1097–1102. doi:10.1007/s00784-013-1096-y
  34. Comar LP, Souza BMD, Grizzo LT, Buzalaf MAR, Magalhães AC. Evaluation of fluoride release from experimental TiF4 and NaF varnishes in vitro. J Appl Oral Sci. 2014;22(2):138–143. doi:10.1590/1678-775720130574
  35. Wagner J, Kawamoto A. Fluoride varnish compositions including an organo phosphoric acid adhesion promoting agent. US patent US8852561B2. July 10, 2014. https://patents.google.com/patent/US8852561B2/en.
  36. Twetman S, Sköld-Larsson K, Modéer T. Fluoride concentration in whole saliva and separate gland secretions after topical treatment with three different fluoride varnishes. Acta Odontol Scand. 1999;57(5):263–266. doi:10.1080/000163599428670
  37. Ten Cate J, Larsen M, Pearce E, Fejerskov O. Chemical interactions between the tooth and oral fluids. In: Dental Caries: The Disease and Its Clinical Management. Oxford, UK: Blackwell Munksgaard; 2003:49–69. ISBN:978-1-4051-0718-1.
  38. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):1187–1197. doi:10.1177/0022034510376046
  39. Reynolds E. Calcium phosphate‐based remineralization systems: Scientific evidence? Aust Dent J. 2008;53(3):268–273. doi:10.1111/j.1834-7819.2008.00061.x
  40. Vogel GL. Oral fluoride reservoirs and the prevention of dental caries. Mongr Oral Sci. 2011;22:146–157. doi:10.1159/000325166
  41. Santos LDM, Reis JILD, Medeiros MPD, Ramos SM, Araújo JMD. In vitro evaluation of fluoride products in the development of carious lesions in deciduous teeth. Braz Oral Res. 2009;23(3):296–301. doi:10.1590/S1806-83242009000300012
  42. Carvalho TS, Peters BG, Rios D, et al. Fluoride varnishes with calcium glycerophosphate: Fluoride release and effect on in vitro enamel demineralization. Braz Oral Res. 2015;29:S1806-83242015000100287. doi:10.1590/1807-3107BOR-2015.vol29.0092
  43. Jafari K, Hekmatfar S, Fereydunzadeh M. In vitro comparison of antimicrobial activity of conventional fluoride varnishes containing xylitol and casein phosphopeptide-amorphous calcium phosphate. J Int Soc Prev Community Dent. 2018;8(4):309–313. doi:10.4103/jispcd.JISPCD_67_18
  44. Carey CM. Focus on fluorides: Update on the use of fluoride for the prevention of dental caries. J Evid Based Dent Pract. 2014;14:95–102. doi:10.1016/j.jebdp.2014.02.004
  45. Walczak M, Turska-Szybka A. The efficacy of fluoride varnishes containing different calcium phosphate compounds. Fluoride. 2017;50:151–160. https://www.proquest.com/docview/1942213151. Accessed September 13, 2023.
  46. Piesiak-Pańczyszyn D, Kaczmarek U. Fluoride release from fluoride varnish under in vitro and in vivo conditions. Dent Med Probl. 2017;54(4):327–331. doi:10.17219/dmp/78887
  47. Chhatwani S, Hoppe J, Naumova EA, et al. Fluoride ion release characteristics of fluoride-containing varnishes: An in vitro study. Appl Sci. 2021;11(4):1452. doi:10.3390/app11041452
  48. Schemehorn BR, Orban JC, Wood GD, Fischer GM, Winston AE. Remineralization by fluoride enhanced with calcium and phosphate ingredients. J Clin Dent. 1999;10(1 Spec No):13–16. PMID:10686853.
  49. Güçlü ZA, Alaçam A, Coleman NJ. A 12-week assessment of the treatment of white spot lesions with CPP-ACP paste and/or fluoride varnish. Biomed Res Int. 2016;2016:8357621. doi:10.1155/2016/8357621
  50. Milburn JL, Henrichs LE, Banfield R, Stansell M, Vandewalle K. Substantive fluoride release from a new fluoride varnish containing CXP. Dentistry. 2015;5(12):1000350. doi:10.4172/2161-1122.1000350
  51. Karlinsey RL, Mackey AC, Schwandt CS, Walker TJ. SEM evaluation of demineralized dentin treated with professional-strength NaF topical pastes. Am J Dent. 2011;24(6):357–362. PMID:22263333.
  52. Elkassas D, Arafa A. Remineralizing efficacy of different calcium-phosphate and fluoride based delivery vehicles on artificial caries like enamel lesions. J Dent. 2014;42(4):466–474. doi:10.1016/j.jdent.2013.12.017
  53. Mohd Said SNB, Ekambaram M, Yiu CKY. Effect of different fluoride varnishes on remineralization of artificial enamel carious lesions. Int J Paed Dentistry. 2016;27(3):163–173. doi:10.1111/ipd.12243
  54. AlAmoudi SA, Pani SC, AlOmari M. The effect of the addition of tricalcium phosphate to 5% sodium fluoride varnishes on the microhardness of enamel of primary teeth. Int J Dent. 2013;2013:486358. doi:10.1155/2013/486358
  55. Cross KJ, Huq NL, Palamara JE, Perich JW, Reynolds EC. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem. 2005;280(15):15362–15369. doi:10.1074/jbc.M413504200
  56. Reynolds EC, Cai F, Cochrane NJ, et al. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J Dent Res. 2008;87(4):344–348. doi:10.1177/154405910808700420
  57. Farooq I, Moheet IA, Imran Z, Farooq U. A review of novel dental caries preventive material: Casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) complex. Saudi J Dent Res. 2013;4(2):47–51. doi:10.1016/j.ksujds.2013.03.004
  58. Eakle WS, Featherstone JDB, Weintraub JA, Shain SG, Gansky SA. Salivary fluoride levels following application of fluoride varnish or fluoride rinse. Community Dent Oral Epidemiol. 2004;32(6):462–469. doi:10.1111/j.1600-0528.2004.00185.x
  59. Patel PM. Comparison of the effect of fluoride varnish, chlorhexidine varnish and casein phosphopeptide-amorphous calcium phosphate (CPP–ACP) varnish on salivary streptococcus mutans level: A six month clinical study. J Clin Diagn Res. 2017;11(8):ZC53–ZC59. doi:10.7860/JCDR/2017/26541.10409
  60. Tuloglu N, Bayrak S, Tunc ES, Ozer F. Effect of fluoride varnish with added casein phosphopeptide-amorphous calcium phosphate on the acid resistance of the primary enamel. BMC Oral Health. 2016;16(1):103. doi:10.1186/s12903-016-0299-4
  61. Zhang Q, Zou J, Yang R, Zhou X. Remineralization effects of casein phosphopeptide-amorphous calcium phosphate crème on artificial early enamel lesions of primary teeth. Int J Paediatr Dent. 2011;21(5):374–381. doi:10.1111/j.1365-263X.2011.01135.x
  62. Bakry AS, Abbassy MA. Increasing the efficiency of CPP-ACP to remineralize enamel white spot lesions. J Dent. 2018;76:52–57. doi:10.1016/j.jdent.2018.06.006
  63. Świetlicka I, Kuc D, Świetlicki M, et al. Near-surface studies of the changes to the structure and mechanical properties of human enamel under the action of fluoride varnish containing CPP–ACP compound. Biomolecules. 2020;10(5):765. doi:10.3390/biom10050765
  64. Yapp R, Powers J. Fluoride ion release from several fluoride varnishes. Dental Advisor. 2012;44:1–2. https://www.dentaladvisor.com/pdf-download/?pdf_url=wp-content/uploads/2015/02/fluoride-ion-release-from-several-fluoride-varnishes.pdf. Accessed September 23, 2023.
  65. Premier Dental. Hygiene/Preventative equipment. Plymouth Meeting, USA: Premier Dental; 2023. http://premusa.com/dental/hygiene.asp. Accessed September 23, 2023.
  66. Pichaiaukrit W, Thamrongananskul N, Siralertmukul K, Swasdison S. Fluoride varnish containing chitosan demonstrated sustained fluoride release. Dent Mater J. 2019;38(6):1036–1042. doi:10.4012/dmj.2018-112
  67. Attin T, Lennon AM, Yakin M, et al. Deposition of fluoride on enamel surfaces released from varnishes is limited to vicinity of fluoridation site. Clin Oral Invest. 2007;11(1):83–88. doi:10.1007/s00784-006-0080-1
  68. Colgate Professional. Update: Duraphat Product Labelling. New York, USA: Colgate-Palmolive Company; 2022. https://www.colgateprofessional.co.uk/products/duraphat-product-labelling-update. Accessed September 19, 2023.
  69. Byeon SM, Lee MH, Bae TS. The effect of different fluoride application methods on the remineralization of initial carious lesions. Restor Dent Endod. 2016;41(2):121. doi:10.5395/rde.2016.41.2.121
  70. Erdem AP, Sepet E, Kulekci G, Trosola SC, Guven Y. Effects of two fluoride varnishes and one fluoride/chlorhexidine varnish on Streptococcus mutans and Streptococcus sobrinus biofilm formation in vitro. Int J Med Sci. 2012;9(2):129–136. doi:10.7150/ijms.3637
  71. Premier Dental. Enamel Pro® Varnish. Plymouth Meeting, USA: Premier Dental; 2023. https://www.premierdentalco.com/product/hygienepreventative/fluoride/enamel-pro-varnish/. Accessed September 23, 2023.
  72. Wefel JS. NovaMin®: Likely clinical success. Adv Dent Res. 2009;21(1):40–43. doi:10.1177/0895937409335622
  73. Simmer JP, Hardy NC, Chinoy AF, Bartlett JD, Hu JC. How fluoride protects dental enamel from demineralization. J Int Soc Prev Community Dent. 2020;10(2):134. doi:10.4103/jispcd.JISPCD_406_19
  74. Kaczmarek U. Mechanizmy kariostatyczne fluoru. Czas Stomatol. 2005;58(6):404–413. https://www.yumpu.com/xx/document/view/22985710/mechanizmy-kariostatyczne-fluoru. Accessed September 23, 2023.
  75. Featherstone JDB. Prevention and reversal of dental caries: Role of low level fluoride. Community Dent Oral Epidemiol. 1999;27(1):31–40. doi:10.1111/j.1600-0528.1999.tb01989.x
  76. Beltrán-Aguilar ED, Goldstein JW, Lockwood SA. Fluoride varnishes: A review of their clinical use, cariostatic mechanism, efficacy and safety. J Am Dent Assoc. 2000;131(5):589–596. doi:10.14219/jada.archiv.2000.0232
  77. Tenuta LMA, Cerezetti RV, Del Bel Cury AA, Tabchoury CPM, Cury JA. Fluoride release from CaF2 and enamel demineralization. J Dent Res. 2008;87(11):1032–1036. doi:10.1177/154405910808701105
  78. Girish Babu K, Subramaniam P, Teleti S. Remineralization potential of varnish containing casein phosphopeptides-amorphous calcium phosphate with fluoride and varnish containing only fluoride: A comparative study. Saudi J Oral Sci. 2018;5(1):35–40. doi:10.4103/sjos.SJOralSci_44_17
  79. Rosin-Grget K, Lincir I. Current concept on the anticaries fluoride mechanism of the action. Coll Antropol. 2001;25(2):703–712. PMID:11811302.
  80. Mielczarek A, Michalik J, Kujawa M. The effect of selected fluoride products on microstructure of early caries lesions [in Polish]. Nowa Stomatol. 2013;3:120–124. http://www.nstomatologia.pl/wp-content/uploads/2014/10/ns_2013_120-124.pdf. Accessed September 14, 2023.
  81. Holve S. An observational study of the association of fluoride varnish applied during well child visits and the prevention of early childhood caries in American Indian children. Matern Child Health J. 2007;12(S1):64–67. doi:10.1007/s10995-007-0294-0
  82. Whitford GM, Wasdin JL, Schafer TE, Adair SM. Plaque fluoride concentrations are dependent on plaque calcium concentrations. Caries Res. 2002;36(4):256–265. doi:10.1159/000063931
  83. Fejerskov E, Clarkson O. Fluoride in caries control. In: Dental Caries: The Disease and Its Clinical Management. Oxford, UK: Blackwell Munksgaard; 2003:49–69. ISBN:978-1-4051-0718-1.
  84. Attin T, Hartmann O, Hilgers RD, Hellwig E. Fluoride retention of incipient enamel lesions after treatment with a calcium fluoride varnish in vivo. Arch Oral Biol. 1995;40(3):169–174. doi:10.1016/0003-9969(95)98804-8
  85. Pithon MM, Baião FS, Sant’Anna LID, Tanaka OM, Cople‐Maia L. Effectiveness of casein phosphopeptide‐amorphous calcium phosphate‐containing products in the prevention and treatment of white spot lesions in orthodontic patients: A systematic review. J Investig Clin Dent. 2019;10(2):e12391. doi:10.1111/jicd.12391
  86. Majithia U, Venkataraghavan K, Choudhary P, Trivedi K, Shah S, Virda M. Comparative evaluation of application of different fluoride varnishes on artificial early enamel lesion: An in vitro study. Indian J Dent Res. 2016;27(5):521–527. doi:10.4103/0970-9290.195642
  87. Somasundaram P, Mandke L, Vimala N. Protective potential of casein phosphopeptide amorphous calcium phosphate containing paste on enamel surfaces. J Conserv Dent. 2013;16(2):152–156. doi:10.4103/0972-0707.108199
  88. Llena C, Leyda AM, Forner L. CPP-ACP and CPP-ACFP versus fluoride varnish in remineralisation of early caries lesions: A prospective study. Eur J Paediatr Dent. 2015;16(3):181–186. PMID:26418918.
  89. Memarpour M, Fakhraei E, Dadaein S, Vossoughi M. Efficacy of fluoride varnish and casein phosphopeptide-amorphous calcium phosphate for remineralization of primary teeth: A randomized clinical trial. Med Princ Pract. 2015;24(3):231–237. doi:10.1159/000379750
  90. Salman NR, ElTekeya M, Bakry N, Omar SS, El Tantawi M. Comparison of remineralization by fluoride varnishes with and without casein phosphopeptide amorphous calcium phosphate in primary teeth. Acta Odontol Scand. 2019;77(1):9–14. doi:10.1080/00016357.2018.1490967
  91. Ekambaram M, Mohd Said S, Yiu C. A review of enamel remineralisation potential of calcium- and phosphate-based remineralisation systems. Oral Health Prev Dent. 2017;15(5):415–420. doi:10.3290/j.ohpd.a38779
  92. Damyanova D, Angelova S, Targova-Dimitrova T. Clinical study remineralization effect of mineralization varnish. IOSR J Dent Med Sci. 2016;15(8):134–136. doi:10.9790/0853-150804134136
  93. Centers for Disease Control and Prevention (CDC). Recommendations for using fluoride to prevent and control dental caries in the United States. Atlanta, USA: Centers for Disease Control and Prevention (CDC); 2001. https://stacks.cdc.gov/view/cdc/5160. Accessed September 8, 2023.
  94. Chestnutt IG, Chadwick BL, Hutchings S, et al. Protocol for “Seal or Varnish?” (SoV) trial: A randomised controlled trial to measure the relative cost and effectiveness of pit and fissure sealants and fluoride varnish in preventing dental decay. BMC Oral Health. 2012;12(1):51. doi:10.1186/1472-6831-12-51
  95. Phantumvanit P, Makino Y, Ogawa H, et al. WHO global consultation on public health intervention against early childhood caries. Comm Dent Oral Epid. 2018;46(3):280–287. doi:10.1111/cdoe.12362
  96. American Dental Association (ADA). Fluoridation Facts. Niagara Falls, USA: American Dental Association (ADA); 2018. https://ebooks.ada.org/fluoridationfacts/. Accessed September 14, 2023.
  97. American Dental Association Council on Scientific Affairs. Professionally applied topical fluoride: Evidence-based clinical recommendations. J Am Dent Assoc. 2006;137(8):1151–1159. doi:10.14219/jada.archive.2006.0356
  98. European Academy of Paediatric Dentistry (EAPD). Guidelines on the use of fluoride in children: An EAPD policy document. Eur Arch Paediatr Dent. 2009;10(3):129–135. doi:10.1007/BF03262673
  99. Petersen PE, Ogawa H. Prevention of dental caries through the use of fluoride: The WHO approach. Community Dent Health. 2016;33(2):66–68. doi:10.1922/CDH_Petersen03
  100. World Health Organization (WHO). WHO Expert Consultation on Public Health Intervention Against Early Childhood Caries: Report of a Meeting. Bangkok, Thailand: World Health Organization (WHO); 2016. https://apps.who.int/iris/bitstream/handle/10665/255627/WHO-NMH-PND-17.1-eng.pdf?sequence=1. Accessed September 1, 2023.
  101. FDI World Dental Federation. FDI policy statement on promoting oral health through water fluoridation. Int Dent J. 2014;64(6):293–294. doi:10.1111/idj.12150
  102. Weyant RJ, Tracy SL, Anselmo T, et al. Topical fluoride for caries prevention. J Am Dent Assoc. 2013;144(11):1279–1291. doi:10.14219/jada.archive.2013.0057
  103. Jafarzadeh D, Rezapour R, Abbasi T, et al. The effectiveness of fluoride varnish and fissure sealant in elementary school children: A systematic review and meta-analysis. Iran J Public Health. 2022;51(2):266–277. doi:10.18502/ijph.v51i2.8680
  104. Zero DT, Fu J, Espeland MA, Featherstone JDB. Comparison of fluoride concentrations in unstimulated whole saliva following the use of a fluoride dentifrice and a fluoride rinse. J Dent Res. 1988;67(10):1257–1262. doi:10.1177/00220345880670100201
  105. Ekstrand J, Koch G, Petersson LG. Plasma fluoride concentration and urinary fluoride excretion in children following application of the fluoride-containing varnish Duraphat®. Caries Res. 1980;14(4):185–189. doi:10.1159/000260452
  106. Kosior P, Kaczmarek U. Effect in vitro of environmental parameters on the release of fluoride ions from some materials used in dentistry [in Polish]. Ann Acad Med Stetin. 2004;50(Suppl 1):65–68. PMID:16892588.
  107. Beiruti N, Frencken JE, Van‘t Hof MA, Van Palenstein Helderman WH. Caries‐preventive effect of resin‐based and glass ionomer sealants over time: A systematic review. Community Dent Oral Epidemiol. 2006;34(6):403–409. doi:10.1111/j.1600-0528.2006.00321.x
  108. Ahovuo-Saloranta A, Forss H, Walsh T, et al. Sealants for preventing dental decay in the permanent teeth. Cochrane Database Syst Rev. 2013;2013:CD001830. doi:10.1002/14651858.CD001830.pub4
  109. Kosior P, Kaczmarek U. Release of fluoride ions into saliva from some dental materials [in Polish]. Ann Acad Med Stetin. 2004;50(Suppl 1):62–64. PMID:16892587.
  110. Kosior P. Fluoride release from selected dental materials in experimental and clinical conditions [doctoral thesis]. Wrocław, Poland: Wroclaw Medical University; 2005.
  111. Eakle W, Kimberly G, Bastin G. Dental Materials: Clinical Applications for Dental Assistants and Dental Hygienists. Philadelphia, USA: Saunders; 2019. ISBN:978-0-323-60955-5.
  112. Piesiak-Panczyszyn D, Watras A, Wiglusz RJ, Dobrzynski M. In vitro comparison of the fluoride ion release from the first- and second-generation fluoride varnishes. Appl Sci. 2023;13(12):7327. doi:10.3390/app13127327
  113. Castillo JL, Milgrom P. Fluoride release from varnishes in two in vitro protocols. J Am Dent Assoc. 2004;135(12):1696–1699. doi:10.14219/jada.archive.2004.0121
  114. Fernández CE, Tenuta LMA, Zárate P, Cury JA. Insoluble NaF in Duraphat® may prolong fluoride reactivity of varnish retained on dental surfaces. Braz Dent J. 2014;25(2):160–164. doi:10.1590/0103-6440201302405
  115. Shen C, Autio-Gold J. Assessing fluoride concentration uniformity and fluoride release from three varnishes. J Am Dent Assoc. 2002;133(2):176–182. doi:10.14219/jada.archive.2002.0141
  116. American Dental Association (ADA). Fluoride Varnish: A Clinical Perspective on the ADA Laboratory Evaluation. Niagara Falls, USA: American Dental Association (ADA); 2015. https://www.ada.org/en/es-MX/member-center/oral-health-topics/~/media/737FB2A4B88A4E9496F0F0A340525C29.ashx. Accessed September 23, 2023.
  117. Gonzalez-Cabezas C, Flannagan S, Krell R, Uekihara M, Niquette C. Fluoride release from fluoride varnishes is affected by incubation conditions. American Association for Dental Research (AADR) 2012 Annual Meeting, March 21–24, 2012, Tampa, USA. Alexandria, USA: American Association for Dental Research (AADR).
  118. Kirschneck C, Christl JJ, Reicheneder C, Proff P. Efficacy of fluoride varnish for preventing white spot lesions and gingivitis during orthodontic treatment with fixed appliances: A prospective randomized controlled trial. Clin Oral Invest. 2016;20(9):2371–2378. doi:10.1007/s00784-016-1730-6
  119. Seshadri VRA, Varghese NS, Gurunathan D. Evaluation of the cyto­compatibility of fluoride varnish and its effect on human gingival fibroblasts (hGFs): An in vitro study. Cureus. 2023;15(7):e41735. doi:10.7759/cureus.41735
  120. Giacaman R, Fernández C, Muñoz-Sandoval C, Fuentes N. Longer retention time of fluoridated varnishes enhances enamel remineralisation in vitro. Oral Health Prev Dent. 2018;15(6):569–573. doi:10.3290/j.ohpd.a38778
  121. Pendrys DG, Haugejorden O, Baårdsen A, Wang NJ, Gustavsen F. The risk of enamel fluorosis and caries among Norwegian children: Implications for Norway and the United States. J Am Dent Assoc. 2010;141(4):401–414. doi:10.14219/jada.archive.2010.0192
  122. Browne D, Whelton H, O’Mullane D. Fluoride metabolism and fluorosis. J Dent. 2005;33(3):177–186. doi:10.1016/j.jdent.2004.10.003
  123. Mascarenhas AK. Is fluoride varnish safe? Validating the safety of fluoride varnish. J Am Dent Assoc. 2021;152(5):364–368. doi:10.1016/j.adaj.2021.01.013
  124. Eyüboğlu G, Yeşilyurt C, Ertürk M. Evaluation of cytotoxicity of dentin desensitizing products. Oper Dent. 2015;40(5):503–514. doi:10.2341/13-334-L
  125. Parirokh M, Forghani FR, Paseban H, Asgary S, Askarifard S, Esmaeeli Mahani S. Cytotoxicity of two resin-based sealers and a fluoride varnish on human gingival fibroblasts. Iran Endod J. 2015;10(2):89–92. PMID:25834590. PMCID:PMC4372780.
  126. Larpbunphol N, Chanamuangkon T, Thamrongananskul N. The fluoride release, abrasion resistance, and cytotoxicity to hGFs of a novel cyanoacrylate-based fluoride varnish compared with conventional fluoride varnish. Dent Mater J. 2022;41(5):757–766. doi:10.4012/dmj.2022-005
  127. Sengun A, Buyukbas S, Hakki SS. Cytotoxic effects of dental desensitizers on human gingival fibroblasts. J Biomed Mater Res. 2006;78B(1):131–137. doi:10.1002/jbm.b.30464
  128. Hoang-Dao BT, Hoang-Tu H, Tran-Hung L, Camps J, Koubi G, About I. Evaluation of a natural resin-based new material (Shellac F) as a potential desensitizing agent. Dent Mater. 2008;24(7):1001–1007. doi:10.1016/j.dental.2007.11.014
  129. Camps J, Pashley DH. Buffering action of human dentin in vitro. J Adhes Dent. 2000;2(1):39–50. PMID:11317407.
  130. Garcia RI, Gregorich SE, Ramos-Gomez F, et al. Absence of fluoride varnish-related adverse events in caries prevention trials in young children, United States. Prev Chronic Dis. 2017;14:160372. doi:10.5888/pcd14.160372
  131. Quiñonez RB, Stearns SC, Talekar BS, Rozier RG, Downs SM. Simulating cost-effectiveness of fluoride varnish during well-child visits for MedicAid-enrolled children. Arch Pediatr Adolesc Med. 2006;160(2):164–170. doi:10.1001/archpedi.160.2.164