Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download original text (EN)

Polymers in Medicine

2020, vol. 50, nr 2, July-December, p. 57–64

doi: 10.17219/pim/127653

Publication type: review article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Biopolymer-based scaffolds for corneal stromal regeneration: A review

Hamed Nosrati1,A,B,C,D,E,F, Korosh Ashrafi-Dehkordi2,D,E,F, Zohreh Alizadeh3,4,E,F, Samira Sanami5,B,D,F, Mehdi Banitalebi-Dehkordi2,D,E,F

1 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran

2 Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran

3 Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

4 Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

5 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

The stroma is one of the 5 layers of the cornea that comprises more than 90% of the corneal thickness, and is the most important layer for the transparency of cornea and refractive function critical for vision. Any significant damage to this layer may lead to corneal blindness. Corneal blindness refers to loss of vision or blindness caused by corneal diseases or damage, which is the 4th most common cause of blindness worldwide. Different approaches are used to treat these patients. Severe corneal damage is traditionally treated by transplantation of a donor cornea or implantation of an artificial cornea. Other alternative approaches, such as cell/stem cell therapy, drug/gene delivery and tissue engineering, are currently promising in the regeneration of damaged cornea. The aim of tissue engineering is to functionally repair and regenerate damaged cornea using scaffolds with or without cells and growth factors. Among the different types of scaffolds, polymer-based scaffolds have shown great potential for corneal stromal regeneration. In this paper, the most recent findings of corneal stromal tissue engineering are reviewed.

Key words

biopolymer, tissue engineering, scaffold, corneal stroma

References (86)

  1. Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthal­mol. 2018;66(2):190–194.
  2. Pineda R. World corneal blindness. In: Colby KA, Dana R. Foundations of Corneal Disease. Cham, Switzerland: Springer; 2020:299–305.
  3. Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–173.
  4. Gupta N, Tandon R, Gupta SK, Sreenivas V, Vashist P. Burden of corneal blindness in India. Indian J Community Med. 2013;38(4):198–206.
  5. Song X, Xie L, Tan X, et al. A multi-center, cross-sectional study on the burden of infectious keratitis in China. PLoS One. 2014;9(12):e113843.
  6. Amouzegar A, Chauhan SK, Dana R. Alloimmunity and tolerance in corneal transplantation. J Immunol. 2016;196(10):3983–3991.
  7. Córdoba A, Mejía LF, Mannis MJ, Navas A, Madrigal-Bustamante JA, Graue-Hernandez EO. Current global bioethical dilemmas in corneal transplantation. Cornea. 2020;39(4):529–533.
  8. Avadhanam VS, Liu CS. A brief review of Boston type-1 and osteo-odonto keratoprostheses. Br J Ophthalmol. 2015;99(7):878–887.
  9. Riau AK, Mondal D, Yam GH, et al. Surface modification of PMMA to improve adhesion to corneal substitutes in a synthetic core-skirt keratoprosthesis. ACS Appl Mater Interfaces. 2015;7(39):21690–21702.
  10. Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal repair and regeneration: Current concepts and future directions. Front Bioeng Biotechnol. 2019;7:135.
  11. Chen Z, You J, Liu X, et al. Biomaterials for corneal bioengineering. Biomed Mater. 2018;13(3):032002.
  12. Liu T, Shen M, Huang L, et al. Characterization of hyperelastic mechanical properties for youth corneal anterior central stroma based on collagen fibril crimping constitutive model. J Mech Behav Biomed Mater. 2020;103:103575.
  13. Ruberti JW, Roy AS, Roberts CJ. Corneal structure and function. Annu Rev Biomed Eng. 2011;13:269–295.
  14. Ethier CR, Johnson M, Ruberti JW. Ocular biomechanics and biotransport. Annu Rev Biomed Eng. 2004;6:249–273.
  15. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339–2349.
  16. DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588–598.
  17. Cintron C, Covington H, Kublin CL. Morphogenesis of rabbit corneal stroma. Invest Ophthalmol Vis Sci. 1983;24(5):543–556.
  18. Winkler M, Chai D, Kriling S, et al. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest Ophthalmol Vis Sci. 2011;52(12):8818–8827.
  19. Shah S, Laiquzzaman MJ. Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by Ocular Response Analyser. Cont Lens Anterior Eye. 2009;32(3):129–132.
  20. Donohue D, Stoyanov B, McCally R, Farrell RA. Numerical modeling of the cornea’s lamellar structure and birefringence properties. J Opt Soc Am A Opt Image Sci Vis. 1995;12(7):1425–1438.
  21. Gipson IK, Spurr-Michaud SJ, Tisdale AS. Hemidesmosomes and anchoring fibril collagen appear synchronously during development and wound healing. Dev Biol. 1988;126(2):253–262.
  22. Levin LA, Nilsson SF, ver Hoeve J, Wu S, Kaufman PL, Alm A. Adler’s Physiology of the Eye E-Book. London, UK: Elsevier Health; 2011.
  23. Chan SWS, Yucel Y, Gupta N. New trends in corneal transplants at the University of Toronto. Can J Ophthalmol. 2018;53(6):580–587.
  24. Anshu A, Price M, Price F. Risk of corneal transplant rejection significantly reduced with Descemet’s membrane endothelial keratoplasty. Ophthalmology. 2012;119(3):536–540.
  25. Fontana L, Iovieno A, Moramarco A. Anterior lamellar keratoplasty and deep anterior lamellar keratoplasty. In: Eye Banking: Changing Face of Corneal Transplantation. Hauppauge, NY: Nova Science Publishers, Inc; 2015:57–66.
  26. Karimian F, Feizi S. Deep anterior lamellar keratoplasty: Indications, surgical techniques and complications. Middle East Afr J Ophthalmol. 2010;17(1):28–37.
  27. Bahar I, Kaiserman I, McAllum P, Slomovic A, Rootman D. Comparison of posterior lamellar keratoplasty techniques to penetrating keratoplasty. Ophthalmology. 2008;115(9):1525–1533.
  28. Melles G, Eggink F, Lander F, et al. A surgical technique for posterior lamellar keratoplasty. Cornea. 1998;17(6):618–626.
  29. Terry MA, Ousley PJ. Deep lamellar endothelial keratoplasty: Visual acuity, astigmatism, and endothelial survival in a large prospective series. Ophthalmology. 2005;112(9):1541–1548.
  30. Price FW, Price MO. Descemet’s stripping with endothelial keratoplasty in 200 eyes: Early challenges and techniques to enhance donor adherence. J Cataract Refract Surg. 2006;32(3):411–418.
  31. De Quengsy GP. Précis ou cours d’opérations sur la chirurgie des yeux: puisé dans le sein de la pratique, & enrichi de figures en taille-douce. Paris, France: Didot; 1790.
  32. Stone W Jr, Herbert E. Experimental study of plastic material as replacement for the cornea: A preliminary report. Am J Ophthalmol. 1953;36(62):168–173.
  33. Salvador-Culla B, Kolovou PE. Keratoprosthesis: A review of recent advances in the field. J Funct Biomater. 2016;7(2):13.
  34. Nonpassopon M, Niparugs M, Cortina MS. Boston type 1 keratoprosthesis: Updated perspectives. Clin Ophthalmol. 2020;14:1189–1200.
  35. Jiraskova N, Rozsival P, Burova M, Kalfertova M. AlphaCor artificial cornea: Clinical outcome. Eye (Lond). 2011;25(9):1138–1146.
  36. Tan A, Tan DT, Tan XW, Mehta JS. Osteo-odonto keratoprosthesis: Systematic review of surgical outcomes and complication rates. Ocul Surf. 2012;10(1):15–25.
  37. Myung D, Duhamel PE, Cochran JR, Noolandi J, Ta CN, Frank CW. Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnol Prog. 2008;24(3):735–741.
  38. Schrage N, Hille K, Cursiefen C. Aktuelle Versorgungsmöglichkeiten mit Keratoprothesen. Ophthalmologe. 2014;111(11):1010–1018.
  39. Duncker GI, Storsberg J, Müller-Lierheim WG. The fully synthetic, bio-coated MIRO® CORNEA UR keratoprosthesis: Development, preclinical testing, and first clinical results. Spektrum der Augenheilkunde. 2014;28(6):250–260.
  40. Lee R, Khoueir Z, Tsikata E, Chodosh J, Dohlman CH, Chen TC. Long-term visual outcomes and complications of Boston keratoprosthesis type II implantation. Ophthalmology. 2017;124(1):27–35.
  41. Kaur J. Osteo-odonto keratoprosthesis: Innovative dental and ophthalmic blending. J Indian Prosthodont Soc. 2018;18(2):89–95.
  42. Schrage N, Hille K, Cursiefen C. Current treatment options with artificial corneas: Boston KPro, Osteo-odontokeratoprosthesis, Miro Cornea® and KeraKlear® [in German]. Ophthalmologe. 2014;111(11):1010–1018.
  43. Ghaffariyeh A, Honarpisheh N, Karkhaneh A, et al. Fyodorov–Zuev keratoprosthesis implantation: Long-term results in patients with multiple failed corneal grafts. Graefes Arch Clin Exp Ophthalmol. 2011;249(1):93–101.
  44. Ma X, Xiang R, Meng X, et al. Russian keratoprosthesis in Stevens–Johnson syndrome. Cornea. 2017;36(3):304–309.
  45. Akpek E, Alkharashi M, Hwang F, Ng S, Lindsley K. Artificial corneas versus donor corneas for repeat corneal transplants. Cochrane Database Syst Rev. 2014;11:CD009561.
  46. Hollick EJ, Watson SL, Dart JKG, Luthert PJ, Allan BDS. Legeais BioKPro III keratoprosthesis implantation: Long term results in seven patients. Br J Ophthalmol. 2006;90(9):1146–1151.
  47. Matthyssen S, Van den Bogerd B, Dhubhghaill SN, Koppen C, Zakaria N. Corneal regeneration: A review of stromal replacements. Acta Biomater. 2018;69:31–41.
  48. Kong B, Mi S. Electrospun scaffolds for corneal tissue engineering: A review. Materials (Basel). 2016;9(8):614.
  49. Kilic Bektas C, Hasirci V. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels. J Tissue Eng Regen Med. 2018;12(4):e1899–e1910.
  50. Kim H, Jang J, Park J, et al. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering. Biofabrication. 2019;11(3):035017.
  51. Wu J, Du Y, Mann MM, Yang E, Funderburgh JL, Wagner WR. Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates. Tissue Eng Part A. 2013;19(17–18):2063–2075.
  52. Ozcelik B, Brown KD, Blencowe A, Daniell M, Stevens GW, Qiao GG. Ultrathin chitosan-poly (ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater. 2013;9(5):6594–6605.
  53. Ghezzi CE, Muja N, Marelli B, Nazhat SN. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels. Biomaterials. 2011;32(21):4761–4772.
  54. Ahearne M, Wilson SL, Liu K-K, Rauz S, El Haj AJ, Yang Y. Influence of cell and collagen concentration on the cell–matrix mechanical relationship in a corneal stroma wound healing model. Exp Eye Res. 2010;91(5):584–591.
  55. Duncan TJ, Tanaka Y, Shi D, Kubota A, Quantock AJ, Nishida KJB. Flow-manipulated, crosslinked collagen gels for use as corneal equivalents. Biomaterials. 2010;31(34):8996–9005.
  56. Kubrak-Kisza M, Kisza KJ, Misiuk-Hojło M. Corneal cross-linking: An example of photoinduced polymerization as a treatment modality in keratoconus. Polim Med. 2016;46(1):89–94.
  57. Phu D, Wray LS, Warren RV, Haskell RC, Orwin EJ. Effect of substrate composition and alignment on corneal cell phenotype. Tissue Eng Part A. 2010;17(5–6):799–807.
  58. Zhang W, Chen J, Qu M, et al. Sustained release of TPCA-1 from silk fibroin hydrogels preserves keratocyte phenotype and promotes corneal regeneration by inhibiting interleukin-1β signaling. Adv Healthc Mater. 2020;9(17):2000591.
  59. San Choi J, Williams JK, Greven M, et al. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials. 2010;31(26):6738–6745.
  60. Shang K, Rnjak-Kovacina J, Lin Y, et al. Accelerated in vitro degradation of optically clear low β-sheet silk films by enzyme-mediated pretreatment. JAMA Ophthalmol. 2013;131(5):676.
  61. Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for cornea tissue engineering. Biomaterials. 2009;30(7):1299–1308.
  62. Rahimipour S, Salahinejad E, Sharifi E, Nosrati H, Tayebi L. Structure, wettability, corrosion and biocompatibility of nitinol treated by alkaline hydrothermal and hydrophobic functionalization for cardiovascular applications. Applied Surface Science. 2020;506:144657.
  63. Zafari M, Aghajani S, Mansouri Boroujeni M, Nosrati H. Vancomycin-loaded electrospun polycaprolactone/nano-hydroxyapatite membrane for the treatment of blood infections. Med Hypotheses. 2020;144:109992.
  64. Ma A, Zhao B, Bentley AJ, et al. Corneal epithelialisation on surface-modified hydrogel implants. J Mater Sci Mater Med. 2011;22(3):663–670.
  65. Gil ES, Mandal BB, Park S-H, Marchant JK, Omenetto FG, Kaplan DL. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials. 2010;31(34):8953–8963.
  66. Lai J-Y, Li Y-T, Cho C-H, Yu T-C. Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomedicine. 2012;7:1101–1114.
  67. Orash Mahmoud Salehi A, Nourbakhsh MS, Rafienia M, Baradaran-Rafii A, Heidari Keshel S. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. Int J Biol Macromol. 2020;161:377–388.
  68. Fernández-Pérez J, Kador KE, Lynch AP, Ahearne M. Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. Mater Sci Eng C. 2020;108:110415.
  69. Lai JY. Corneal stromal cell growth on gelatin/chondroitin sulfate scaffolds modified at different NHS/EDC molar ratios. Int J Mol Sci. 2013;14(1):2036–2055.
  70. Kong B, Chen Y, Liu R, et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat Commun. 2020;11(1):1435.
  71. Wang S, Ghezzi CE, White JD, Kaplan DL. Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds. J Biomed Mater Res A. 2015;103(10):3339–3348.
  72. Ghezzi CE, Wang L, Behlau I, et al. Degradation of silk films in multipocket corneal stromal rabbit models. J Appl Biomater Funct Mater. 2016;14(3):e266–e276.
  73. Gosselin EA, Torregrosa T, Ghezzi CE, et al. Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells. J Tissue Eng Regen Med. 2018;12(1):285–295.
  74. Cui Z, Zeng Q, Liu S, et al. Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma induced by a mechanical collagen microenvironment and transplantation in a rabbit model. Acta Biomater. 2018;75:183–199.
  75. Hu X, Lui W, Cui L, Wang M, Cao Y. Tissue engineering of nearly transparent corneal stroma. Tissue Eng. 2005;11(11–12):1710–1717.
  76. Ghezzi CE, Marelli B, Omenetto FG, Funderburgh JL, Kaplan DL. 3D functional corneal stromal tissue equivalent based on corneal stromal stem cells and multi-layered silk film architecture. PLoS One. 2017;12(1):e0169504.
  77. Luo L-J, Lai J-Y, Chou S-F, Hsueh Y-J, Ma DH-K. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater. 2018;65:123–136.
  78. Wu J, Du Y, Mann MM, Funderburgh JL, Wagner WR. Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue. Exp Eye Res. 2014;120:71–81.
  79. Syed-Picard FN, Du Y, Lathrop KL, Mann MM, Funderburgh ML, Funderburgh JL. Dental pulp stem cells: A new cellular resource for corneal stromal regeneration. Stem Cells Transl Med. 2015;4(3):276–285.
  80. Chou SF, Lee CH, Lai JY. Bioengineered keratocyte spheroids fabricated on chitosan coatings enhance tissue repair in a rabbit corneal stromal defect model. J Tissue Eng Regen Med. 2018;12(2):316–320.
  81. Lee HJ, Fernandes-Cunha GM, Na KS, Hull SM, Myung D. Bio-orthogonally crosslinked, in situ forming corneal stromal tissue substitute. Adv Healthc Mater. 2018:e1800560. doi:10.1002/adhm.201800560
  82. de la Cruz Cardona J, Ionescu A-M, Gómez-Sotomayor R, et al. Transparency in a fibrin and fibrin-agarose corneal stroma substitute generated by tissue engineering. Cornea. 2011;30(12):1428–1435.
  83. Torbet J, Malbouyres M, Builles N, et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials. 2007;28(29):4268–4276.
  84. Guan L, Ge H, Tang X, et al. Use of a silk fibroin-chitosan scaffold to construct a tissue-engineered corneal stroma. Cells Tissues Organs. 2013;198(3):190–197.
  85. Shimmura S, Doillon CJ, Griffith M, et al. Collagen-poly (n-isopropyl­acrylamide)-based membranes for corneal stroma scaffolds. Cornea. 2003;22(7 Suppl 1):S81–S88.
  86. Bektas CK, Hasirci V. Cell incorporated methacrylated gelatin (GelMA) hydrogels for corneal stroma tissue engineering. Conference abstract (poster). 10th World Biomaterials Congress, Montréal, Canada, 17 May–22 May, 2016. doi:10.3389/conf.FBIOE.2016.01.02297