Polymers in Medicine
2019, vol. 49, nr 2, July-December, p. 49–56
doi: 10.17219/pim/118394
Publication type: original article
Language: English
Download citation:
PALS probing of photopolymerization shrinkage in densely packed acrylate-type dental restorative composites
1 Department of Orthodontics, Danylo Halytsky Lviv National Medical University, Ukraine
2 Department of Physics, Opole University of Technology, Poland
3 Faculty of Science and Technology, Jan Dlugosz University of Czestochowa, Poland
Abstract
Background. Using positron annihilation lifetime spectroscopy (PALS), microstructural changes in commercial dental restorative composites under light-curing polymerization were identified as a modification in mixed positron/Ps trapping, where the decay of positronium (Ps; the bound state of positrons and electrons) is caused by free-volume holes mainly in the polymer matrix, and positron trapping is defined by interfacial free-volume holes in a mixed filler–polymer environment. In loosely packed composites with a filler content of <70–75%, this process was related to the conversion of Ps-to-positron trapping.
Objectives. To disclose such peculiarities in densely packed composites using the example of he commercially available acrylate-based composite ESTA-3® (ESTA Ltd., Kiev, Ukraine), which boasts a polymerization volumetric shrinkage of only 1.5%.
Material and Methods. ESTA‑3® was used as a commercially available acrylate-based dental restorative composite. A fast-fast coincidence system of 230‑ps resolution based on 2 photomultiplier tubes coupled to a BaF2 detector and ORTEC® electronics was used to register lifetime spectra in normal-measurement statistics. The raw PAL spectra were treated using x3-x2-CDA (coupling decomposition algorithm).
Results. The annihilation process in the densely packed dental restorative composites (DRCs), as exemplified by the commercially available acrylate-based composite ESTA‑3®, is identified as mixed positron/ Ps trapping, where o-Ps decay is caused by free-volume holes in the polymer matrix and interfacial filler–polymer regions, and free positron annihilation is defined by free-volume holes between filler particles. The most adequate model-independent estimation of the polymerization volumetric shrinkage can be done using averaged positron annihilation lifetime. A meaningful description of the transformations in Psand positron-trapping sites under light curing can be developed on the basis of a semiempirical model exploring x3‑x2‑CDA. There is a strong monolithization of agglomerated filler nanoparticles in these composites, caused by the photo-induced disappearing of positron traps at the cost of Ps-decaying holes.
Conclusion. Governing the polymerization void-evolution process in densely packed DRC ESTA‑3® occurs mainly in the filler sub-system as positron-to-Ps trapping conversion, which is the reason for the low corresponding volumetric shrinkage.
Key words
acrylates, positron annihilation lifetime spectroscopy, dental restorative composites, light curing, photopolymerization
References (34)
- Bland MH, Peppas NA. Photopolymerized multifunctional (meth)acrylates as model polymers for dental application. Biomaterials. 1996;17:1109–1114. doi:10.1016/0142-9612(96)85912-6
- Cramer NB, Stansbury JW, Bowman CN. Recent advantages and developments in composite dental restorative materials. J Dent Res. 2011;90:402–416. doi:10.1177/0022034510381263
- Miletic V (ed). Dental Composite Materials for Direct Restorations. Cham, Switzerland: Springer Nature; 2018:319. doi:10.1007/978-3-319-60961-4
- Charisma®. Scientific Information. Heraeus Kulzer GmbH, Hanau, Germany. https://www.pantelides-dental.gr/userfiles/files/CharismaScientificInformation.pdf. Accessed on April 24, 2020.
- Dipol®. Composite Universal. Instruction on using Dipol materials. Oksomat-AN, Ukraine Dental Products, 2016;6-7. www.oksomat-an.com. Accessed on April 24, 2020.
- Krause-Rehberg R, Leipner HS. Positron Annihilation in Semiconductors: Defect Studies. Heidelberg, Germany: Springer 1999:383.
- Jean YC. Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers. Microchem J. 1990;42:72–102. doi:10.1016/0026-265X(90)90027-3
- Shpotyuk O, Filipecki J. Free Volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study. Czestochowa, Poland: WSP; 2003:114.
- Jean YC, Van Horn JD, Hung WS, Lee KR. Perspective of positron annihilation spectroscopy in polymers. Macromolecules. 2013;46:7133–7145. doi:10.1021/ma401309x
- Tuomisto F, Makkonen I. Defect identification in semiconductors with positron annihilation: Experiment and theory. Rev Mod Phys. 2013;85:1583–1631. doi:10.1103/RevModPhys.85.1583
- Shpotyuk O, Ingram A, Shpotyuk O. Free volume structure of acrylic-type dental nanocomposites tested with annihilating positrons. Nanoscale Res Lett. 2016;11:528-1–528-6. doi:10.1186/s11671-016-1751-8
- Shpotyuk O, Ingram A, Shpotyuk O, Bezvushko E. Light-cured dimethacrylate dental restorative composites under a prism of annihilating positrons. Polim Med. 2017;47:91–100. doi:10.17219/pim/81450
- Shpotyuk O, Adamiak S, Bezvushko E, et al. Light-curing volumetric shrinkage in dimethacrylate-based dental composites by nanoindentation and PAL study. Nanoscale Res Lett. 2017;12:75-1–75-6. doi: 10.1186/s11671-017-1845-y
- Chakraverty S, Mitra S, Mandal K, Nambissan PMG, Chattopadhyay S. Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2. Phys Rev B. 2005;71:024115-1–8. doi:10.1103/PhysRevB.71.024115
- Mitra S, Mandal K, Sinha S, Nambissan PMG, Kumar S. Size and temperature dependent cationic redistribution in NiFe2O4 (SiO2) nanocomposites: Positron annihilation and Mössbauer studies. J Phys D: Appl Phys. 2006;39:4228–4235. doi:10.1088/0022-3727/39/19/016
- Kleczewska J, Bieliński DM, Dryzek E, Piatkowska A. Application of positron annihilation lifetime spectroscopy in studies of dental composites based on dimethacrylate resins. In: Pielichowski K, ed. Modern Polymeric Materials For Environmental Application, 4(1). Krakow, Poland: TEZA; 2010:143-150.
- Kleczewska J, Bielinski DM, Ranganathan N, Sokolowski J. Characterization of light-cured dental composites. In: Ranganathan N, ed. Materials Characterization. Modern Methods and Applications. Boca Raton, USA: CRC Press; 2016:117–148.
- Shirazinia M, Mehmandoost-Khajen-Dad A, Dehghani V, Mehmandoost-Khajen-Dad J, Khaghani M. The effect of curing light intensity on free volume size in some dental composites. Polim Med. 2016;46:129–133. doi:10.17219/pim/68647
- Svajdlenkova H, Sausa O, Peer G, Gorsche C. In situ investigation of the kinetics and microstructure during photopolymerization by positron annihilation technique and NIR-photorheology. RSC Adv. 2018;8:37085-1–7. doi:10.1039/C8RA07578F
- Shpotyuk O, Filipecki J, Ingram A, et al. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool. Nanoscale Res Lett. 2015;10:77-1–5. doi:10.1186/s11671-015-0764-z
- Shpotyuk O, Ingram A, Filipecki J, Bujňáková Z, Baláž P. Positron annihilation lifetime study of atomic imperfections in nanostructurized solids: On the parameterized trapping in wet-milled arsenic sulfides As4S4. Phys Stat Solidi B. 2016;253:1054–1059. doi:10.1002/pssb.201552560
- Shpotyuk Ya, Cebulski J, Ingram A, Shpotyuk O. Mathematical modelling of elementary trapping-reduction processes in positron annihilation lifetime spectroscopy: Methodology of Ps-to-positron trapping conversion. J Phys (Conf Ser). 2017;936:012049-1–012049-4. doi:10.1088/1742-6596/936/1/012049
- Shpotyuk O, Ingram A, Shpotyuk Y. Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy. Nucl Instr Meth Phys Res B. 2018;416:102–109. doi:10.1016/j.nimb.2017.12.012
- ЭСТА-3®. Dental photocured material for tooth filling. ЭСТА‑3 microhybrid. Instruction on using. Ukraine, Kiev (2016). http://www.esta-dental.kiev.ua/downloads/download/esta-3.pdf. Accessed December 23, 2019.
- Kansy J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instr Meth Phys Res A. 1996;374:235–244. doi:10.1016/0168-9002(96)00075-7
- Liu M, Kitai AH, Mascher P. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J Luminescence. 1992;54:35–42. doi:10.1016/0022-2313(92)90047-D
- Vijay YK, Wate S, Awasthi DK, Das D, Ghughre S. Ion induced effects in polymers. Indian J Eng Mater Sci. 2000;7:375–377.
- Dannefaer S, Bretagnon T, Kerr D. Vacancy-type defects in crystalline and amorphous SiO2. J Appt Phys. 1993;7:884-890. doi:10.1063/1.354882
- Dlubek G, Clarke AP, Fretwell HM, Dugdale SB, Alam MA. Positron lifetime studies of free volume hole size distribution in glassy polycarbonate and polystyrene. Phys Status Solidi A. 1996;157:351–364. doi:10.1002/pssa.2211570218
- Dlubek G, Saarinen K, Fretwell HM. Positron states in polyethylene and polytetrafluoroethylene: A positron lifetime and Doppler-broadening study. Nucl Instr Meth Phys Res B. 1998;142:139–155. doi:10.1016/S0168-583X(98)00261-4
- Pfeifer CS, Shelton ZR, Braga RR, Windmoller D, Machalo JC, Stansbury JW. Characterization of dimethacrylate polymeric networks: A study of the crosslinked structure formed by monomers used in dental composites. Eur Polym J. 2011;47:162–170. doi:10.1016/j.eurpolymj.2010.11.007
- Kluin JE, Yu Z, Vleeshouwers S, McGervey JD, Jamieson AM, Simha R. Temperature and time dependence of free volume in bisphenol A polycarbonates studied by positron lifetime spectroscopy. Macromolecules. 1992;25:5089–5093. doi:10.1021/ma00045a040
- Kluin JE, Yu Z, Vleeshouwers S, et al. Ortho-positronium lifetime studies of free volume in polycarbonates of different structures: Influence of hole size distribution. Macromolecules. 1993;26:1853–1861. doi:10.1021/ma00060a010
- Ingram A. Atomic‑deficient nanostructurization in water‑sorption alumomagnesium spinel ceramics MgAl2O4. Appl Nanosci. 2019;9:731–735. doi:10.1007/s13204-018-0696-x




