Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download original text (EN)

Polymers in Medicine

2019, vol. 49, nr 2, July-December, p. 49–56

doi: 10.17219/pim/118394

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

PALS probing of photopolymerization shrinkage in densely packed acrylate-type dental restorative composites

Olha Shpotyuk1,A,B,C,D,E,F, Adam Ingram2,B,C,E,F, Oleh Shpotyuk3,A,C,D,E,F, Andrii Miskiv1,B,C,E,F, Nina Smolar1,A,C,E,F

1 Department of Orthodontics, Danylo Halytsky Lviv National Medical University, Ukraine

2 Department of Physics, Opole University of Technology, Poland

3 Faculty of Science and Technology, Jan Dlugosz University of Czestochowa, Poland

Abstract

Background. Using positron annihilation lifetime spectroscopy (PALS), microstructural changes in commercial dental restorative composites under light-curing polymerization were identified as a modification in mixed positron/Ps trapping, where the decay of positronium (Ps; the bound state of positrons and electrons) is caused by free-volume holes mainly in the polymer matrix, and positron trapping is defined by interfacial free-volume holes in a mixed filler–polymer environment. In loosely packed composites with a filler content of <70–75%, this process was related to the conversion of Ps-to-positron trapping.
Objectives. To disclose such peculiarities in densely packed composites using the example of he commercially available acrylate-based composite ESTA-3® (ESTA Ltd., Kiev, Ukraine), which boasts a polymerization volumetric shrinkage of only 1.5%.
Material and Methods. ESTA‑3® was used as a commercially available acrylate-based dental restorative composite. A fast-fast coincidence system of 230‑ps resolution based on 2 photomultiplier tubes coupled to a BaF2 detector and ORTEC® electronics was used to register lifetime spectra in normal-measurement statistics. The raw PAL spectra were treated using x3-x2-CDA (coupling decomposition algorithm).
Results. The annihilation process in the densely packed dental restorative composites (DRCs), as exemplified by the commercially available acrylate-based composite ESTA‑3®, is identified as mixed positron/ Ps trapping, where o-Ps decay is caused by free-volume holes in the polymer matrix and interfacial filler–polymer regions, and free positron annihilation is defined by free-volume holes between filler particles. The most adequate model-independent estimation of the polymerization volumetric shrinkage can be done using averaged positron annihilation lifetime. A meaningful description of the transformations in Psand positron-trapping sites under light curing can be developed on the basis of a semiempirical model exploring x3‑x2‑CDA. There is a strong monolithization of agglomerated filler nanoparticles in these composites, caused by the photo-induced disappearing of positron traps at the cost of Ps-decaying holes.
Conclusion. Governing the polymerization void-evolution process in densely packed DRC ESTA‑3® occurs mainly in the filler sub-system as positron-to-Ps trapping conversion, which is the reason for the low corresponding volumetric shrinkage.

Key words

acrylates, positron annihilation lifetime spectroscopy, dental restorative composites, light curing, photopolymerization

References (34)

  1. Bland MH, Peppas NA. Photopolymerized multifunctional (meth)acrylates as model polymers for dental application. Biomaterials. 1996;17:1109–1114. doi:10.1016/0142-9612(96)85912-6
  2. Cramer NB, Stansbury JW, Bowman CN. Recent advantages and developments in composite dental restorative materials. J Dent Res. 2011;90:402–416. doi:10.1177/0022034510381263
  3. Miletic V (ed). Dental Composite Materials for Direct Restorations. Cham, Switzerland: Springer Nature; 2018:319. doi:10.1007/978-3-319-60961-4
  4. Charisma®. Scientific Information. Heraeus Kulzer GmbH, Hanau, Germany. https://www.pantelides-dental.gr/userfiles/files/CharismaScientificInformation.pdf. Accessed on April 24, 2020.
  5. Dipol®. Composite Universal. Instruction on using Dipol materials. Oksomat-AN, Ukraine Dental Products, 2016;6-7. www.oksomat-an.com. Accessed on April 24, 2020.
  6. Krause-Rehberg R, Leipner HS. Positron Annihilation in Semiconductors: Defect Studies. Heidelberg, Germany: Springer 1999:383.
  7. Jean YC. Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers. Microchem J. 1990;42:72–102. doi:10.1016/0026-265X(90)90027-3
  8. Shpotyuk O, Filipecki J. Free Volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study. Czestochowa, Poland: WSP; 2003:114.
  9. Jean YC, Van Horn JD, Hung WS, Lee KR. Perspective of positron annihilation spectroscopy in polymers. Macromolecules. 2013;46:7133–7145. doi:10.1021/ma401309x
  10. Tuomisto F, Makkonen I. Defect identification in semiconductors with positron annihilation: Experiment and theory. Rev Mod Phys. 2013;85:1583–1631. doi:10.1103/RevModPhys.85.1583
  11. Shpotyuk O, Ingram A, Shpotyuk O. Free volume structure of acrylic-type dental nanocomposites tested with annihilating positrons. Nanoscale Res Lett. 2016;11:528-1–528-6. doi:10.1186/s11671-016-1751-8
  12. Shpotyuk O, Ingram A, Shpotyuk O, Bezvushko E. Light-cured dimethacrylate dental restorative composites under a prism of annihilating positrons. Polim Med. 2017;47:91–100. doi:10.17219/pim/81450
  13. Shpotyuk O, Adamiak S, Bezvushko E, et al. Light-curing volumetric shrinkage in dimethacrylate-based dental composites by nanoindentation and PAL study. Nanoscale Res Lett. 2017;12:75-1–75-6. doi: 10.1186/s11671-017-1845-y
  14. Chakraverty S, Mitra S, Mandal K, Nambissan PMG, Chattopadhyay S. Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2. Phys Rev B. 2005;71:024115-1–8. doi:10.1103/PhysRevB.71.024115
  15. Mitra S, Mandal K, Sinha S, Nambissan PMG, Kumar S. Size and temperature dependent cationic redistribution in NiFe2O4 (SiO2) nanocomposites: Positron annihilation and Mössbauer studies. J Phys D: Appl Phys. 2006;39:4228–4235. doi:10.1088/0022-3727/39/19/016
  16. Kleczewska J, Bieliński DM, Dryzek E, Piatkowska A. Application of positron annihilation lifetime spectroscopy in studies of dental composites based on dimethacrylate resins. In: Pielichowski K, ed. Modern Polymeric Materials For Environmental Application, 4(1). Krakow, Poland: TEZA; 2010:143-150.
  17. Kleczewska J, Bielinski DM, Ranganathan N, Sokolowski J. Characterization of light-cured dental composites. In: Ranganathan N, ed. Materials Characterization. Modern Methods and Applications. Boca Raton, USA: CRC Press; 2016:117–148.
  18. Shirazinia M, Mehmandoost-Khajen-Dad A, Dehghani V, Mehmandoost-Khajen-Dad J, Khaghani M. The effect of curing light intensity on free volume size in some dental composites. Polim Med. 2016;46:129–133. doi:10.17219/pim/68647
  19. Svajdlenkova H, Sausa O, Peer G, Gorsche C. In situ investigation of the kinetics and microstructure during photopolymerization by positron annihilation technique and NIR-photorheology. RSC Adv. 2018;8:37085-1–7. doi:10.1039/C8RA07578F
  20. Shpotyuk O, Filipecki J, Ingram A, et al. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool. Nanoscale Res Lett. 2015;10:77-1–5. doi:10.1186/s11671-015-0764-z
  21. Shpotyuk O, Ingram A, Filipecki J, Bujňáková Z, Baláž P. Positron annihilation lifetime study of atomic imperfections in nanostructurized solids: On the parameterized trapping in wet-milled arsenic sulfides As4S4. Phys Stat Solidi B. 2016;253:1054–1059. doi:10.1002/pssb.201552560
  22. Shpotyuk Ya, Cebulski J, Ingram A, Shpotyuk O. Mathematical modelling of elementary trapping-reduction processes in positron annihilation lifetime spectroscopy: Methodology of Ps-to-positron trapping conversion. J Phys (Conf Ser). 2017;936:012049-1–012049-4. doi:10.1088/1742-6596/936/1/012049
  23. Shpotyuk O, Ingram A, Shpotyuk Y. Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy. Nucl Instr Meth Phys Res B. 2018;416:102–109. doi:10.1016/j.nimb.2017.12.012
  24. ЭСТА-3®. Dental photocured material for tooth filling. ЭСТА‑3 microhybrid. Instruction on using. Ukraine, Kiev (2016). http://www.esta-dental.kiev.ua/downloads/download/esta-3.pdf. Accessed December 23, 2019.
  25. Kansy J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instr Meth Phys Res A. 1996;374:235–244. doi:10.1016/0168-9002(96)00075-7
  26. Liu M, Kitai AH, Mascher P. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J Luminescence. 1992;54:35–42. doi:10.1016/0022-2313(92)90047-D
  27. Vijay YK, Wate S, Awasthi DK, Das D, Ghughre S. Ion induced effects in polymers. Indian J Eng Mater Sci. 2000;7:375–377.
  28. Dannefaer S, Bretagnon T, Kerr D. Vacancy-type defects in crystalline and amorphous SiO2. J Appt Phys. 1993;7:884-890. doi:10.1063/1.354882
  29. Dlubek G, Clarke AP, Fretwell HM, Dugdale SB, Alam MA. Positron lifetime studies of free volume hole size distribution in glassy polycarbonate and polystyrene. Phys Status Solidi A. 1996;157:351–364. doi:10.1002/pssa.2211570218
  30. Dlubek G, Saarinen K, Fretwell HM. Positron states in polyethylene and polytetrafluoroethylene: A positron lifetime and Doppler-broadening study. Nucl Instr Meth Phys Res B. 1998;142:139–155. doi:10.1016/S0168-583X(98)00261-4
  31. Pfeifer CS, Shelton ZR, Braga RR, Windmoller D, Machalo JC, Stansbury JW. Characterization of dimethacrylate polymeric networks: A study of the crosslinked structure formed by monomers used in dental composites. Eur Polym J. 2011;47:162–170. doi:10.1016/j.eurpolymj.2010.11.007
  32. Kluin JE, Yu Z, Vleeshouwers S, McGervey JD, Jamieson AM, Simha R. Temperature and time dependence of free volume in bisphenol A polycarbonates studied by positron lifetime spectroscopy. Macromolecules. 1992;25:5089–5093. doi:10.1021/ma00045a040
  33. Kluin JE, Yu Z, Vleeshouwers S, et al. Ortho-positronium lifetime studies of free volume in polycarbonates of different structures: Influence of hole size distribution. Macromolecules. 1993;26:1853–1861. doi:10.1021/ma00060a010
  34. Ingram A. Atomic‑deficient nanostructurization in water‑sorption alumomagnesium spinel ceramics MgAl2O4. Appl Nanosci. 2019;9:731–735. doi:10.1007/s13204-018-0696-x