Polymers in Medicine

Polim. Med.
Index Copernicus (ICV 2022) – 121.55
MEiN – 70
Average rejection rate – 39.13%
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2018, vol. 48, nr 2, July-December, p. 77–82

doi: 10.17219/pim/102978

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

The polymorphism of statins and its effect on their physicochemical properties

Marta Karaźniewicz-Łada1,A,B,C,D,E,F, Karina Bąba1,B,C,D, Filip Dolatowski1,B,C,D, Alicja Dobrowolska1,B,C,D, Marlena Rakicka1,B,C,D

1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poland

Abstract

Polymorphism of pharmaceutical substances has a significant impact on their physicochemical properties, durability, bioavailability and consequently on their pharmacological activity. Solid dosage forms may exist in both crystalline and amorphous forms. Amorphous varieties are characterized by higher solubility and dissolution rates, while crystalline forms show greater purity and storage stability. The choice between the crystalline or amorphous form of a drug is extremely important to ensure effective and safe pharmacotherapy. Statins − the most commonly used group of drugs in the treatment of lipid disorders − are an example of drugs that occur in many crystalline and amorphous forms. Statins belong to class II in the biopharmaceutical classification system (BCS), which means that they are poorly soluble, but permeate biological membranes well. The bioavailability of statins shows considerable variation, which is associated with the first-pass effect in the liver and the accumulation of the drug in the hepatocytes. The improvement of bioavailability after oral administration of poorly soluble medicinal substances remains one of the most challenging aspects of the drug development process. A specific polymorphic form is obtained by applying appropriate conditions during the process of its preparation under industrial conditions, including the use of a suitable solvent, a specific temperature or rate of crystallization. The article provides a comprehensive update on the current knowledge of the influence of polymorphic form on statin solubility and bioavailability. Research is still being carried out to obtain new polymorphic varieties of statins that are characterized by better physicochemical and pharmacokinetic parameters.

Key words

bioavailability, solubility, amorphic substances, crystalline forms, statins

References (43)

  1. Sykuła A, Łodyga-Chruścińska E, Zakrzewski M. Impact of Polymorphism on Pharmaceutical Substances [in Polish]. 2006. http://repozytorium.p.lodz.pl/handle/11652/230. Accessed June 14, 2018.
  2. Stańczak A, Stańczak C. Polimorfizm substancji farmaceutycznych. Lek w Polsce. 2013;23:50–58. http://m.lekwpolsce.pl/download.php?dokid=52a06a0ef11fb. Accessed October 31, 2018.
  3. Omar M, Makary P, Wlodarski M. A Review of polymorphism and the amorphous state in the formulation strategy of medicines and marketed drugs. UK J Pharm Biosci. 2015;3(6):60. doi:10.20510/ukjpb/3/i6/87837
  4. Lu J, Rohani S. Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Curr Med Chem. 2009;16(7):884–905.
  5. Kasten G, Nouri K, Grohganz H, Rades T, Lobmann K. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine. Int J Pharm. 2017;533:138–144. doi.org/10.1016/j.ijpharm.2017.09.063
  6. Sibik J, Sargent MJ, Franklin M, Zeitler JA. Crystallization and phase changes in paracetamol from the amorphous solid to the liquid phase. Mol Pharm. 2014;11(4):1326–1334. doi: 10.1021/mp400768m.
  7. Aso Y, Yoshioka S, Kojima S. Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by (13)C nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature. J Pharm Sci. 2001;90(6):798–806.
  8. Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20(10):18759–18776. doi:10.3390/molecules201018759.
  9. Ramkumar S, Raghunath A, Raghunath S. Statin therapy: Review of safety and potential side effects. Acta Cardiol Sin. 2016;32:631–639.
  10. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292(5519):1160–1164. doi:10.1126/science.1059344
  11. Wang C-Y, Liu P-Y, Liao JK. Pleiotropic effects of statin therapy. Trends Mol Med. 2008;14(1):37–44. doi:10.1016/j.molmed.2007.11.004
  12. Maji D, Shaikh S, Solanki D, Gaurav K. Safety of statins. Indian J Endocrinol Metab. 2013;17(4):636–646. doi:10.4103/2230-8210.113754
  13. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): A randomised controlled trial. Lancet Lond Engl. 2002;360(9346):1623–1630.
  14. Reiner Ž, Tedeschi-Reiner E. Prevalence and types of persistent dyslipidemia in patients treated with statins. Croat Med J. 2013;54(4):339–345.
  15. Adams SP, Tsang M, Wright JM. Lipid-lowering efficacy of statin. Cochrane Database Syst. Rev. 2015;12:CD008226.
  16. Schaefer EJ, McNamara JR, Tayler T, et al. Comparisons of effects of statins (atorvastatin, fluvastatin, lovastatin, pravastatin, and simvastatin) on fasting and postprandial lipoproteins in patients with coronary heart disease versus control subjects. Am J Cardiol. 2004;93(1):31–39.
  17. Maurya D, Belgamwar V, Tekade A. Microwave induced solubility enhancement of poorly water soluble atorvastatin calcium. J Pharm Pharmacol. 2010;62(11):1599–1606. doi:10.1111/j.2042-7158.2010.01187.x
  18. Lennernäs H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42(13):1141-1160. doi:10.2165/00003088-200342130-00005
  19. Discovering new crystalline fo - Titel - Elektronische Hochschulschriften. http://digital.bibliothek.uni-halle.de/id/1390128. Accessed June 14, 2018.
  20. Kim J-S, Kim M-S, Park HJ, Jin S-J, Lee S, Hwang S-J. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm. 2008;359(1–2):211–219. doi:10.1016/j.ijpharm.2008.04.006
  21. Kim M-S, Jin S-J, Kim J-S, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2008;69(2):454–465. doi:10.1016/j.ejpb.2008.01.007
  22. Zhang H-X, Wang J-X, Zhang Z-B, Le Y, Shen Z-G, Chen J-F. Micronization of atorvastatin calcium by antisolvent precipitation process. Int J Pharm. 2009;374(1–2):106–113. doi:10.1016/j.ijpharm.2009.02.015
  23. Shete G, Puri V, Kumar L, Bansal AK. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech. 2010;11(2):598–609. doi:10.1208/s12249-010-9419-7
  24. Briggs CA, Jennings RA, Wade R, et al. Crystalline [R- (R*,R*)]-2-(4-Dfluorophenyl)-β,δ-dihydroxy-5-(1-methylethyl)- 3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid hemi calcium salt (atorvastatin). October 1999. https://patents.google.com/patent/US5969156A/en/und. Accessed July 17, 2018.
  25. Zallen R. The Physics of Amorphous Solids. John Wiley & Sons; 2008.
  26. Luvai A, Mbagaya W, Hall AS, Barth JH. Rosuvastatin: A review of the pharmacology and clinical effectiveness in cardiovascular disease. Clin Med Insights Cardiol. 2012;6:17–33. doi:10.4137/CMC.S4324
  27. Karazniewicz-Lada M, Glowka A, Mikolajewski J, Przyslawski J. Genetic and Non-Genetic Determinants of the Pharmacological Activity of Statins. http://www.ingentaconnect.com/contentone/ben/cdm/2016/00000017/00000009/art00006. Published November 2016. Accessed July 17, 2018.
  28. Blatter F, Schaaf PAVD, Szelagiewicz M. Crystalline forms of rosuvastatin calcium salt. April 2011. https://patents.google.com/patent/US7932387B2/en. Accessed July 17, 2018.
  29. Crystalline rosuvastatin calcium. March 2008. https://patents.google.com/patent/WO2008036286A1/en. Accessed July 17, 2018.
  30. Kumar Y, Rafeeq M, De S, Sathyanarayana S. Process for the preparation of amorphous rosuvastatin calcium. August 2007. https://patents.google.com/patent/US20070191318A1/en. Accessed July 17, 2018.
  31. Wożakowska-Kapłon B. Terapia hipercholesterolemii w schorzeniach układu sercowo-naczyniowego – jaki cel, jaka statyna, jaka dawka? Folia Cardiol. 2014;9(1):55–66.
  32. Tan NY, Zeitler JA. Probing phase transitions in simvastatin with terahertz time-domain spectroscopy. Mol Pharm. 2015;12(3):810–815. doi:10.1021/mp500649q
  33. Graeser KA, Strachan CJ, Patterson JE, Gordon KC, Rades T. Physicochemical properties and stability of two differently prepared amorphous forms of simvastatin. Cryst Growth Des. 2008;8(1):128–135. doi:10.1021/cg700913m
  34. Zhang F, Aaltonen J, Tian F, Saville DJ, Rades T. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin. Eur J Pharm Biopharm. 2009;71(1):64–70. doi:10.1016/j.ejpb.2008.07.010
  35. Singh H, Philip B, Pathak K. Preparation, characterization and pharmacodynamic evaluation of fused dispersions of simvastatin using PEO-PPO block copolymer. Iran J Pharm Res IJPR. 2012;11(2):433–445.
  36. Schaaf PAVD, Blatter F, Szelagiewicz M, Schoening K-U. Crystalline forms of pitavastatin calcium. December 2014. https://patents.google.com/patent/US20140364614A1/en. Accessed July 18, 2018.
  37. Kljajic A, Trost S, Pecavar A, Zupet R. Polymorphic form of pitavastatin calcium. July 2014. https://patents.google.com/patent/EP2751081A1/en. Accessed July 18, 2018.
  38. Van DSPA, Marcolli C, Szelagiewicz M, Burkhard A, Wolleb H, Wolleb A. Crystalline forms of fluvastatin sodium. February 2003. https://patents.google.com/patent/WO2003013512A2/en. Accessed July 18, 2018.
  39. Chavhan B, Awasthi AK, Aggarwal R, et al. Polymorphic forms of fluvastatin sodium and process for preparing the same. September 2010. https://patents.google.com/patent/US7795451/en. Accessed July 18, 2018.
  40. Keri V, Szabo C, Aryai E, Aronhime J. Novel forms of pravastatin sodium. December 2005. https://patents.google.com/patent/US20050288370/en. Accessed July 18, 2018.
  41. Chun IK, Lee KM, Lee KE, Gwak HS. Effects of bile salts on gastrointestinal absorption of pravastatin. J Pharm Sci. 2012;101(7):2281–2287. doi:10.1002/jps.23123
  42. Yoshida MI, Oliveira MA, Gomes ECL, Mussel WN, Castro WV, Soares CDV. Thermal characterization of lovastatin in pharmaceutical formulations. J Therm Anal Calorim. 2011;106(3):657–664. doi:10.1007/s10973-011-1510-0
  43. Patel RP, Patel MM. Physicochemical characterization and dissolution study of solid dispersions of lovastatin with polyethylene glycol 4000 and polyvinylpyrrolidone K30. Pharm Dev Technol. 2007;12(1):21–33. doi:10.1080/10837450601166510