Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2018, vol. 48, nr 1, January-June, p. 57–63

doi: 10.17219/pim/102974

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Dialysis membranes: A 2018 update

Piotr Olczyk1,A,B,C,D, Artur Małyszczak1,A,B,C,D, Mariusz Kusztal2,E,F

1 Faculty of Medicine, Wroclaw Medical University, Poland

2 Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Poland

Abstract

Dialysis membranes are the basic element of a hemodialyzer. Synthetic and natural materials characterized by various fiber arrangements are used in their production. The most up-to-date ones are made of synthetic polymers such as polyamide, phosphatidylserine (PS), polyacrylonitrile-based fiber (PAN), polyarylethersulfone, polyethersulfone, or polymethylmethacrylate. Dialysis membranes are characterized by the ability to remove uremic molecules, which can be divided into small water-soluble compounds, protein-bound compounds and larger “middle molecules”. Newer membranes such as medium cut off membranes (MCO) allow the removal of a wider spectrum of uremic molecules, which reduces the risk of late complications of dialysis. Dialysis membranes are used in therapy methods such as low flux, high flux or HDx therapy. An important aim in dialysis membrane development is to increase their biocompatibility. Insufficient biocompatibility can result in complement activation or platelet activation, which can lead to an increased risk of cardiovascular complications. The aim of the study is to discuss the latest reports on dialysis membranes.

Key words

dialysis, membranes, HDx, MCO

References (48)

  1. Dębska-Ślizień A, Rutkowsk B, Rutkowski G, Korejwo R, Gellert R. Stan terapii nerkozastępczej w Polsce – 2016. Nefrol Dial Pol. 2018;22:1–8.
  2. Ronco C. Hemodiafiltration: Technical and clinical issues. Blood Purif. 2015;40(Suppl 1):2–11.
  3. Clark WR, Hamburger RJ, Lysaght MJ. Effect of membrane structure and composition on performance and biocompatibility in hemodialysis. Kidney Int. 1999;56(6):2005–2015.
  4. Ronco C, Crepaldi C, Brendolan A, et al. Evolution of synthetic membranes for blood purification: The case of the Polyflux family. Nephrol Dial Transplant. 2003;18(Suppl 7):10–20, discussion 55.
  5. Zweigert C, Neubauer M, Storr M, et al. Progress in the development of membranes for kidney-replacement therapy. In: Drioli E, Giorno L, eds. Comprehensive Membrane Science and Engineering. Oxford, UK: Elsevier; 2013:351–387.
  6. Davenport A. Membrane designs and composition for hemodialysis, hemofiltration and hemodiafiltration: Past, present and future. Minerva Urol Nefrol. 2010;62(1):29–40.
  7. Ronco C, Levin N, Brendolan A, et al. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: Effects of fiber structure and design on flow patterns and solute clearances. Hemodial Int. 2006;10(4):380–388.
  8. Sakai K, Matsuda M. Solute removal efficiency and biocompatibility of the high-performance membrane from engineering point of view: High-performance membrane dialyzers. Contrib Nephrol. 2011;173:11–22.
  9. Meert N, Eloot S, Schepers E, et al. Comparison of removal capacity of two consecutive generations of high-flux dialysers during different treatment modalities. Nephrol Dial Transplant. 20011;26(8):2624–2630.
  10. Su B.-H, Shi Y, Fu P, Tao Y, Nie S, Zhao C.-S. Clinical evaluation of polyethersulfone high-flux haemodialysis membrane compared to other membranes. J Appl Polym Sci. 2012;124(S1):91–98.
  11. Wenten I, Aryanti P, Khoiruddin K, Hakim A, Himma N. Advances in polysulfone-based membranes for hemodialysis. Journal of Membrane Science & Research. 2016;2(2):78–89.
  12. Baihai S, Shudong S, Changsheng Z. Polyethersulfone Hollow Fiber Membranes for Hemodialysis. Progress in Hemodialysis – From Emergent Biotechnology to Clinical Practice. 2011. Doi:10.5772/22857.
  13. Sunohara T, Masuda T. Cellulose triacetate as a high-performance membrane: High-performance membrane dialyzers. Contrib Nephrol. 2011;173:156–163.
  14. Ronci M, Leporini L, Felaco P, et al. Proteomic characterization of a new asymmetric cellulose triacetate membrane for hemodialysis. Proteom Clin Appl. 2018;12(6):e1700140.
  15. Sunohara T, Masuda, T. Fundamental characteristics of the newly developed ATA membrane dialyzer. Contrib Nephrol. 2017;189:215–221.
  16. Aucella F, Vigilante M, Gesuete A. Review: The effect of polymethylmethacrylate dialysis membranes on uraemic pruritus. NDT Plus. 2010;3(Suppl 1):i8–i11.
  17. Igoshi T, Tomisawa N, Hori Y, Jinbo Y. Polyester polymer alloy as a high-performance membrane. Contrib Nephrol. 2011;173:148–155.
  18. Nakano A. Ethylene vinyl alcohol co-polymer as a high-performance membrane: An EVOH membrane with excellent biocompatibility. Contrib Nephrol. 2011;173:164–171.
  19. Nakada H, Kashiwagi T, Iino Y, Katayama Y. Therapeutic effects of the long-term use of PAN membrane dialyzer in hemodialysis patients: Efficacy in old dialysis patients with mild PAD. J Nippon Med Sch. 2014;81(4):221–235.
  20. Thomas M, Moriyama K, Ledebo I. AN69: Evolution of the world’s first high permeability membrane. Contrib Nephrol.2011;173:119–129.
  21. Meijers B, Metalidis C, Vanhove T, Poesen R, Kuypers D, Evenepoel P. A noninferiority trial comparing a heparin-grafted membrane plus citrate-containing dialysate versus regional citrate anticoagulation: Results of the CiTED study. Nephrol Dial Transplant. 2017;32(4):707–714.
  22. Szymczak A, Kanafa M, Chuć M, Kusztal M. Hemodializa bez heparyny. Postepy Hig Med Dosw. 2018;72:671–677.
  23. Chu J. Scientists produce dialysis membrane made from graphene. MIT News Office. http://news.mit.edu/2017/scientists-produce-dialysis-membrane-made-from-graphene-0628. Accessed October 6, 2018.
  24. Aucella F, Gesuete A, Vigilante M, et al. Adsorption dialysis: From physical principles to clinical applications. Blood Purif. 2013;35(Suppl 2):42–47.
  25. Guo J, Lu L, Hua Y, et al. Vasculopathy in the setting of cardiorenal syndrome: Roles of protein-bound uremic toxins. Am J Physiol Heart Circ Physiol. 2017;1:313(1):1–13.
  26. Meyer TW, Peattie JW, Miller JD, et al. Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate. J Am Soc Nephrol. 2007;18(3):868–874.
  27. Ficheux A, Ronco C, Brunet P, Argilés À. The ultrafiltration coefficient: This old ‘grand inconnu’ in dialysis. Nephrol Dial Transplant. 2015;30(2):204–208.
  28. Davenport A. Portable and wearable dialysis devices for the treatment of patients with end-stage kidney failure: Wishful thinking or just over the horizon? Pediatr Nephrol. 2014;30(12):2053–2060.
  29. Karkar A. Advances in hemodialysis techniques. Hemodialysis, IntechOpen. http://www.intechopen.com/books/hemodialysis/advan-ces-in-hemodialysis-techniques. Accessed October 6, 2018.
  30. Saito A. Definition of high-performance membranes: From the clinical point of view. Contrib Nephrol. 2011;173:1–10.
  31. Tsuchida K, Minakuchi J. Albumin loss under the use of high-performance membranes. Contrib Nephrol. 2011;173:76–83.
  32. Niwa T. Update of uremic toxin research by mass spectrometry. Mass Spectrom Rev. 2011;30(3):510–521.
  33. Palmer SC, Rabindranath KS, Craig JC, et al. High-flux versus low-flux membranes for end-stage kidney disease. Cochrane Database Syst Rev. 2012;12(9):CD005016.
  34. Delmez JA, Yan G, Bailey J, et al; Hemodialysis (HEMO) Study Group. Cerebrovascular disease in maintenance hemodialysis patients: Results of the HEMO study. Am J Kidney Dis. 2006;47(1):131–138.
  35. Pieroni L, Mortera SL, Greco V, et al. Biocompatibility assessment of haemodialysis membrane materials by proteomic investigations. Mol Biosyst. 2015;11(6):1633–1643.
  36. Poppelaars F, Faria B, Costa MG, et al. The complement system in dialysis: A forgotten story? Front Immunol. 2018;9:71.
  37. Poppelaars F, Gaya da Costa M, Faria B, et al. Intradialytic complement activation precedes the development of cardiovascular events in hemodialysis patients. Front Immunol. 2018;9:2070.
  38. Lines SW, Richardson VR, Thomas B, Dunn EJ, Wright MJ, Carter AM. Complement and cardiovascular disease: The missing link in haemodialysis patients? Nephron. 2016;134(2):103–103.
  39. Kiaii M, Djurdjev O, Farah M, et al. Use of electron-beam sterilized hemodialysis membranes and risk of thrombocytopenia. JAMA. 2011;306(15):1679–1687.
  40. Lang SM, Becker A, Fischer R, Huber RM, Schiffl H. Acute effects of hemodialysis on lung function in patients with end-stage renal disease. Wien Klin Wochenschr. 2006;118(3–4):108–113.
  41. Hakim RM, Wingard RL, Parker RA. Effect of the dialysis membrane in the treatment of patients with acute renal failure. N Engl J Med. 1994;331(20):1338–1342.
  42. Hakim RM. Clinical implications of hemodialysis membrane biocompatibility. Kidney Int. 1993;44(3):484–494.
  43. Wolley M, Jardine M, Hutchison CA. Exploring the clinical relevance of providing increased removal of large middle molecules. Clin J Am Soc Nephrol. 2018;13(5):805–814.
  44. Kirsch AH, Lyko R, Nilsson LG, et al. Performance of hemodialysis with novel medium cut-off dialyzers. Nephrol Dial Transplant. 2017;32(1):165–172.
  45. Lorenzin A, Neri M, Lupi A, et al. Quantification of internal filtration in hollow fiber hemodialyzers with medium cut-off membrane. Blood Purif. 2018;46(3):196–204.
  46. Ronco C, The rise of expanded hemodialysis. Blood Purif. 2017;44(2):I–VIII.
  47. Ronco C, Manna GL. Expanded hemodialysis: A new therapy for a new class of membranes. Contrib Nephrol. 2017;190:124–133.
  48. Azar T, ed. Modelling and Control of Dialysis Systems. Berlin, Germany: Springer-Verlag; 2013.