Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2018, vol. 48, nr 1, January-June, p. 17–24

doi: 10.17219/pim/99801

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Preparation, characterization and in vitro evaluation of tablets containing microwave-assisted solid dispersions of apremilast

Jyotsana R. Madan1,A,B,C,D,E,F, Akshaya R. Pawar1,B,C,D,E, Rajesh B. Patil1,B,C,D,F, Rajendra Awasthi2,C,D,E,F, Kamal Dua3,C,D,E,F

1 Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, India

2 Amity Institute of Pharmacy, Amity University, Noida, India

3 Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Australia

Abstract

Background. Solid dispersions are among the techniques successfully employed to enhance the dissolution of poorly water-soluble drugs. Microwave (MW)-assisted evaporative crystallization has been used to prepare solid dispersions of drugs and polymers.
Objectives. The aim of the study was to investigate the solubility of apremilast (APM) in water by exploring the effect of MW-assisted solid dispersion technology.
Material and Methods. In the present study, solid dispersions of APM, a poorly water-soluble drug, were prepared. The solid dispersions were prepared using the conventional method (CM) and the MW-based solvent evaporation technique. Microwave energy was used to enhance the solubility and dissolution rate of APM. The physical mixture and solid dispersions were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Apremilast tablets containing MW-assisted solid dispersions were prepared by the direct compression technique and compared with the marketed formulation (Aprezo tablets).
Results. The results obtained confirmed the conversion of crystalline APM to an amorphous form. The XRPD pattern of the MW-assisted formulation at a 2:1 ratio suggests the amorphous structure of APM within the formulation. Based on solubility studies results, Syloid® 244FP was selected as the best carrier. The dissolution study results suggested that the APM tablet prepared using MW-assisted solid dispersions at a 2:1 carrier/drug ratio improved the APM dissolution rate compared to the marketed formulation.
Conclusion. Based on the results, it can be concluded that the MW-assisted solid dispersion technique may be an effective approach to enhancing the dissolution profile of other poorly water-soluble drugs.

Key words

microwave, solubility, apremilast, solid dispersions

References (40)

  1. Serajuddin A. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–1066.
  2. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–1302.
  3. Dua K, Pabreja K, Ramana MV, Bukhari NI. Preparation, characterization, and in vitro evaluation of aceclofenac PVP-solid dispersions. J Disper Sci Technol. 2011;32(8):1151–1157.
  4. Schver GCRM, Lee PI. Combined effects of supersaturation rates and doses on the kinetic-solubility profiles of amorphous solid dispersions based on water-insoluble poly (2-hydroxyethyl methacrylate) hydrogels. Mol Pharm. 2018;15(5):2017–2026. doi:10.1021/acs.molpharmaceut.8b00162
  5. Muhammad RS, Bashir S, Mahmood A, et al. Application of various polymers and polymers based techniques used to improve solubility of poorly water soluble drugs: A review. Acta Poloniae Pharmaceutica. 2017;74(2):347–356.
  6. Madan JR, Pawar KT, Dua K. Solubility enhancement studies on lurasidone hydrochloride using mixed hydrotropy. Int J Pharm Investig. 2015;5(2):114–120.
  7. Dua K, Pabreja K, Ramana MV, Lather V. Dissolution behavior of β-cyclodextrin molecular inclusion complexes of aceclofenac. J Pharm Bioallied Sci. 2011;3(3):417–425.
  8. Dua K, Ramana MV, Sara UV, et al. Investigation of enhancement of solubility of norfloxacin beta-cyclodextrin in presence of acidic solubilizing additives. Curr Drug Deliv. 2007;4(1):21–25.
  9. Dua K, Pabreja K, Gorajana A. Dissolution behaviour of aceclofenac-PVP coprecipitates. Ars Pharm. 2012;53(3):7–12.
  10. Dittgen M, Fricke S, Gerecke H, Osterwald H. Hot spin mixing: A new technology to manufacture solid dispersions. I: Testosterone. Pharmazie. 1995;50(3):225–226.
  11. Van Nijlen T, Brennan K, Van der Mooter G, Blaton N, Kinget R, Augustijns P. Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersion. Int J Pharm. 2003;254(2):173–181.
  12. Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using solution enhanced dispersion by supercritical fluids (SEDS). J Pharm Res. 1999;16(5):676–681.
  13. Radacsi N, Stefanidis G, Szabo-Revesz P, Ambrus R. Analysis of niflumic acid prepared by rapid microwave-assisted evaporation. J Pharm Biomed Anal. 2014;98:16–21.
  14. Alshehri S, Shakeel F, Ibrahim M, et al. Influence of the microwave technology on solid dispersions of mefenamic acid and flufenamic acid. PLOS ONE. 2017;12(7):e0182011.
  15. Wang W, Zhao C, Sun J, et al. Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process. Energy. 2015;87:678–685.
  16. Xiqiang Z, Wenlong W, Hongzhen L, Yampeng M, Chunyuan M, Zhanlong S. Temperature rise and weight loss characteristics of wheat straw under microwave heating. J Anal Appl Pyrol. 2014;107:59–66.
  17. Moneghini M, Bellich B, Baxa P, Princivalle F. Microwave generated solid dispersion containing ibuprofen. Int J Pharm. 2008;361(1–2):125–130.
  18. Martin BC, Thomas LW, Dann FJ. Apremilast for the treatment of psoriatic arthritis. Dermatol Online J. 2017;23(2):1–12.
  19. Manhart R, Rich PC. Nail psoriasis. Clin Exp Rheumatol. 2015;33(5 Suppl 93):S7–S13.
  20. Papp K, Cather JC, Rosoph L, et al. Efficacy of apremilast in the treatment of moderate to sever psoriasis: A randomized controlled trial. Lancet. 2012;380(9843):738–746.
  21. Oram Y, Akkaya AD. Treatment of nail psoriasis: Common concepts and new trends. Dermatol Res Pract. 2013;2013:180496. doi: 10.1155/2013/180496
  22. EMA (2014). Full prescribing information available at: http://www.ema.europa.eu/docs/enGB/documentlibrary/EPAR_Public_assesmentreport/human/003746/WC500182629.pdf. Accessed January 21, 2018.
  23. FDA (2014a). Full prescribing information available at: http://www.acceessdata.fda.gov/drugsatfda_docs/nda/2014/205437 Origl s000 ChemR.pdf. Accessed November 11, 2017.
  24. Wu YD, Zhang XL, Liu XH, et al. The preparation, characterization, structure and dissolution analysis of apremilast solvatomorphs. Acta Crystallogr C: Struct Chem. 2017;73(Pt 4):305–313.
  25. Tang M, Hu P, Huang S, Zheng Q, Yu H, He Y. Development of an extended-release formulation for apremilast and a level A in vitro–in vivo correlation study in beagle dogs. Chem Pharm Bull. 2016;64(11):1607–1615.
  26. Madan JR, Pawar KT, Dua K. Solubility enhancement studies on lurasidone hydrochloride using mixed hydrotropy. Int J Pharm Investig. 2015;5(2):114–120.
  27. Madan JR, Kamate VJ, Dua K, Awasthi R. Improving the solubility of nevirapine using a hydrotropy and mixed hydrotropy based solid dispersion approach. Polim Med. 2017;47(2):83–90.
  28. Lai J, Lin W, Scholes P, Li M. Investigating the effects of loading factors on the in vitro pharmaceutical performance of mesoporous material as drug carrier ibuprofen. Materials (Basel). 2017;10(2):E150. doi:103390/ma10020150
  29. Gorajana A, Rajendra A, Yew LM, Dua K. Preparation and characterization of cefuroxime axetil solid dispersion using hydrophilic carriers. Int J Pharm Investig. 2015;5(3):171.
  30. Talib H. The application of microwave formulation and isothermal titration calorimetry for pharmaceutical compounds [PhD thesis]. University of Huddersfield; 2014.
  31. Higuchi TK, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.
  32. Maheshwari RK, Indurkhya A. Formulation and evaluation of aceclofenac injection made by mixed hydrotropic solubilization technique. Iran J Pharm Res. 2010;9(3):233–242.
  33. Bhole PG, Patil VR. Enhancement of water solubility of felodipine by preparing solid dispersion using poly-ethylene glycol 6000 and polyvinyl alcohol. Asian J Pharm. 2014;28(3):240–244.
  34. Gorajana A, Kit WW, Dua K. Characterization and solubility study of norfloxacin-polyethylene glycol, polyvinylpyrrolidone and carbopol 974P solid dispersions. Recent Pat Drug Deliv Formul. 2015;9(2):167–182.
  35. Lyn LY, Sze HW, Rajendran A, Adinarayana G, Dua K, Garg S. Crystal modifications and dissolution rate of piroxicam. Acta Pharm. 2011;61(4):391–402.
  36. Madan JR, Kamate VJ, Awasthi R, Dua K. Formulation, characterization and in-vitro evaluation of fast dissolving tablets containing gliclazide hydrotropic solid dispersions. Recent Pat Drug Deliv Formul. 2017;11(2):147–154.
  37. FDA (2014b), Full prescribing information available at: https://www.accessdata.fda.gov/scrips/cder/ dissolution /dsp_getllData.cfm. Accessed July 24, 2017.
  38. Vasconcelos T, Costa P. Development of a rapid dissolving ibuprofen solid dispersion. Pharm Res. 2007;16:676–681.
  39. Maurya D, Belgamwar V, Tekade A. Microwave induced solubility enhancement of poorly water soluble atrovastatin calcium. J Pharm Pharmacol. 2010;62(11):1599–1606.
  40. Lai J, Lin W, Scholes P, Li M. Investigating the effects of loading factors on the in vitro pharmaceutical performance of mesoporous materials as drug carriers for ibuprofen. Materials. 2017;10(2):150. doi:10.3390/ma10020150