Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2018, vol. 48, nr 1, January-June, p. 11–16

doi: 10.17219/pim/96288

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

A study of the effect of X-ray irradiation on the structure of Narafilcon A biopolymer soft contact lenses

Katarzyna Filipecka1,A,B,C,D, Mariusz Budaj2,A,B,C,D, Bogdan Miśkowiak2,E,F, Sylwia Mandecka3,B,C, Radosław Mandecki3,B,C, Małgorzata Makowska-Janusik1,E,F, Jacek Filipecki1,E,F

1 Institute of Physics, Faculty of Mathematics and Natural Sciences, Jan Dlugosz University in Czestochowa, Poland

2 Department of Optometry and Biology of Visual System, Poznan University of Medical Sciences, Poland

3 Department of Radiotherapy, Specialist District Hospital, Częstochowa, Poland

Abstract

Background. The effects of external factors such as X-ray irradiation on the structure and physical properties of contact lenses are very important for both the patients using contact lenses and medical personnel.
Objectives. The aim of the study was to investigate the effect of X-rays on the structure of Narafilcon A silicone-hydrogel contact lenses.
Material and Methods. In order to study the structural changes caused by X-rays in Narafilcon A polymer contact lenses, the following spectroscopy methods were used: positron annihilation lifetime spectroscopy (PALS), Fourier transform middle infrared spectroscopy (FTIR) and Raman spectroscopy (RS). Irradiation of the investigated sample was carried out using an Elekta Synergy accelerator. The contact lenses were irradiated with the following total doses of X-rays: 0.05 Gy, 0.5 Gy, 0.8 Gy, and 1.0 Gy.
Results. The PALS measurements showed that X-ray irradiation caused slight changes in the size of the free volume and the fractional free volume in the structure of the polymer contact lenses examined. However, the FTIR and RS measurements showed that X-rays did not break the monomer bonds in the polymeric structure of the sample.
Conclusion. The changes revealed by the PALS method may be related to possible displacement of monomer chains, resulting in changes in the dimensions and numbers of free volumes. The finding that X-ray radiation does not affect or damage polymer bonds can in the future contribute to the use of X-ray and gamma radiation to sterilize contact lenses.

Key words

positron annihilation lifetime spectroscopy, Fourier transform middle infrared spectroscopy, Raman spectroscopy, contact lens, radiation

References (28)

  1. Tranoudis I, Efron N. In-eye performance of soft contact lenses made from different materials. Cont Lens Anterior Eye. 2004;27(3):133–148.
  2. Wolffsohn JS, Hunt OA, Basra AK. Simplified recording of soft contact lens fit. Cont Lens Anterior Eye. 2009;32(1):37–42.
  3. Morgan PB, Chamberlain P, Moody K, Maldonado-Codina C. Ocular physiology and comfort in neophyte subjects fitted with daily disposable silicone hydrogel contact lenses. Cont Lens Anterior Eye. 2013;36(3):118–125.
  4. Jean YC. Characterizing free volumes and holes in polymers by positron annihilation spectroscopy. In: Advances with Positron Spectroscopy of Solids and Surfaces. NATO Advanced Research Workshop. 1993:563–580.
  5. Eldrup M, Lighbody D, Sherwood JN. The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys. 1981;63:51–62.
  6. Brandt W, Berko S, Walker WW. Positronium decay in molecular substances. Phys Rev. 1960;120(4):1289–1295.
  7. Kocela A, Filipecki J, Korzekwa P, Golis E. Investigation of the free volume changes in one day hydrogel and one day silicone hydrogel contact lenses by means of positron annihilation lifetime spectroscopy. Polim Med. 2012;42(1):61–68.
  8. Filipecki J, Kocela A, Korzekwa W. Study of free volumes of polymer hydrogel and silicone-hydrogel contact lenses by means of the positron annihilation lifetime spectroscopy method. Polim Med. 2014;44(4):255–260.
  9. Filipecka K, Budaj M, Miśkowiak B, Makowska-Janusik M, Filipecki J. Comparison of occurrence of free volumes for rigid gas permeable and soft contact lenses. Polim Med. 2015;45(1):31–35.
  10. Tao SJ. Positronium annihilation in molecular substances. J Chem Phys. 1972;56(11):5499–5510.
  11. Liao KS, Chen H, Awad S, et al. Determination of free-volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy. Macromolecules. 2011; 44(17):6818–6826.
  12. Filipecki J, Kocela A, Korzekwa P, et al. Structural study of polymer hydrogel contact lenses by means of positron annihilation lifetime spectroscopy and UV-vis-NIR methods. J Mater Sci Mater Med. 2013;24(8):1837–1842.
  13. Pathrick RA. Positron annihilation: A probe for nanoscale voids and free volume. Prog Polymer Sci. 1997;22(1):1–47.
  14. Noda I. Two-dimensional infrared (2D IR) spectroscopy: Theory and applications. Appl Spectrosc. 1990;44(4):550–561.
  15. Koenig JL. Spectroscopy of Polymers. 2nd ed. New York, NY: Elsevier Science Inc.; 1999.
  16. Ramanathan T, Fisher FT, Ruoff RS, Brinson LC. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater. 2005;17(6):1290–1295.
  17. Mandecki R, Filipecki J. Teleradiotherapy and brachytherapy [in Polish]. Prace Naukowe AJD w Częstochowie FIZYKA IX. 2014;9:95–116.
  18. Andreo P, Burns DT, Hohlfeld K, et al. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. Vienna, Austria: International Atomic Energy Agency (IAEA); 2006.
  19. Filipecki J, Golis E, Reben M, Filipecka K, Kocela A, Wasylak J. Positron lifetime spectroscopy as a method to study of the defect degree materials with disordered structure. Optoelectron Adv Mat. 2013;7(11–12):1029–1031.
  20. Reben M, Golis E, Filipecki J, et al. Voids in mixed-cation silicate glasses: Studies by positron annihilation lifetime and Fourier transform infrared spectroscopies. Spectrochim Acta A Mol Biomol Spectrosc. 2014;129:643–648.
  21. Filipecki J, Sitarz M, Kocela A, et al. Studying functional properties of hydrogel and silicone-hydrogel contact lenses with PALS, MIR and Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2014;131:686–690.
  22. Kansy J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res Section A. 1996;374(2):235–244.
  23. Krause-Rehberg R, Leipner HS. Positron Annihilation in Semiconductors. Defect Studies. Berlin-Heidelberg-New York: Springer-Verlag; 1999.
  24. Jean YC, David Van Horn J, Wei-Song H, Kuier-Rarn L. Perspective of positron annihilation spectroscopy in polymers. Macromolecules. 2013;46(18):7133–7145.
  25. Rosiak JM, Olejniczak J. Medical applications of radiation formed hydrogel. Radiat Phys Chem. 1993;42(4):903–906.
  26. Tranoudis I, Efron N. Water properties of soft contact lens materials. Cont Lens Anterior Eye 2004;27:193–208.
  27. Krysztofiak K, Szyczewski A. Study of dehydration and water states in new and worn soft contact lens materials. Optica Applicata. 2014;44(2):237–249.
  28. Mullarney MP, Seery TAP, Weiss RA. Drug diffusion in hydrophobically modified N,N-dimethylacrylamide hydrogels. Polymer. 2006;47(11):3845–3855.