Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2017, vol. 47, nr 2, July-December, p. 91–100

doi: 10.17219/pim/81450

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Light-cured dimethacrylate dental restorative composites under a prism of annihilating positrons

Olha Shpotyuk1,A,B,C,D,F, Adam Ingram2,B,C,E, Oleh Shpotyuk3,C,E,F, Elvira Bezvushko1,A,C,E,F

1 Department of Pediatric Dentistry, Danylo Halytsky Lviv National Medical University, Ukraine

2 Department of Physics, Opole University of Technology, Poland

3 Institute of Physics, Jan Długosz University in Częstochowa, Poland

Abstract

Background. Breakthrough resolutions in current biopolymer engineering rely on reliable diagnostics of atomic-deficient spaces over the finest sub-nanometer length scales. One such diagnostic is positron annihilation lifetime spectroscopy, which probes space-time continuum relationships for the interaction between electrons and their antiparticle (positrons) in structural entities like free-volume defects, vacancies, vacancy-like clusters, interfacial voids and pores, etc.
Objectives. This paper is intended to highlight the possibilities of positron annihilation lifetime spectroscopy as an informative instrumentation tool to parameterize free-volume evolution in light-cured dimethacrylate dental restorative composites exemplified by Charisma® (Heraeus Kulzer GmbH, Hanau, Germany) and Dipol® (Oksomat-AN Ltd, Kyiv, Ukraine).
Material and Methods. The subjects of the study were the commercially available dimethacrylate-type dental restorative composites Charisma® and Dipol®. The analysis used a fast-fast coincidence system of 230 ps resolution based on 2 photomultiplier tubes coupled to BaF2 scintillator detectors and ORTEC® (ORTEC, Oak Ridge, USA) electronics to register lifetime spectra in normal-measurement statistics evolving ~1 million coincidences.
Results. The annihilation process in both composites is identified as mixed positron-Ps (positronium) trapping, where ortho-Ps decaying is caused entirely by free-volume holes in the polymer matrix, and the 2nd component is defined mainly by interfacial free-volume holes between filler nanoparticles and the surrounding polymer. The most appropriate model-independent estimation of photopolymerization volumetric shrinkage in dental restorative composites can be done using averaged positron annihilation lifetime. Partiallyconstrained x4-term analysis of lifetime spectra is less efficient, giving greater scatter of variance with an additional artifact of fixed shortest lifetime allowing unresolved mixing in the 2nd component. A meaningful phenomenological description of transformations in Ps and positron-trapping sites under light curing, which occurs more efficiently in Charisma® than in Dipol® nanocomposites, can be developed at the basis of a semi-empirical model exploring a x3-x2-coupling decomposition algorithm.
Conclusion. A deep understanding of void-evolution processes in dimethacrylate dental composites employing positron annihilation lifetime spectroscopy makes it possible to diagnose, characterize and engineer novel biomaterials for advanced use in medical practice.

Key words

positron annihilation lifetime spectroscopy, dental restorative composites, light curing, dimethacrylate

References (37)

  1. Cramer NB, Stansbury JW, Bowman CN. Recent advantages and developments in composite dental restorative materials. J Dent Res. 2011;90:402–416.
  2. Ferracane JL. Resin composite – state of the art. Dent Mater. 2011;27:29–38.
  3. Rühle M, Dosch H, Mittemeijer EJ, Van de Voorde MH. European White Book on Fundamental Research in Materials Science. Stuttgart: Max-Planck-Institut für Metallforschung; 2002.
  4. Krause-Rehberg R, Leipner H. Positron Annihilation in Semiconductors: Defect Studies. Heidelberg: Springer; 1999.
  5. Jean YC. Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers. Microchem J. 1990;42:72–102.
  6. Shpotyuk O, Filipecki J. Free Volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study. Czestochowa, Poland: Ed. WSP; 2003.
  7. Keeble DJ, Brossmann U, Puff W, Würschum R. Positron annihilation studies of materials. In: Kaufmann EN, ed. Characterization of Materials. Hoboken, NJ: John Wiley & Sons; 2012:1899–1925.
  8. Tuomisto F, Makkonen I. Defect identification in semiconductors with positron annihilation: Experiment and theory. Rev Mod Phys. 2013;85:1583–1631.
  9. Jean YC, Van Horn JD, Hung WS, Lee KR. Perspective of positron annihilation spectroscopy in polymers. Macromolecules. 2013;46:7133–7145.
  10. Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc. 2003;34:1382–1390.
  11. Charisma®. Scientific Information. Heraeus Kulzer GmbH, Hanau, Germany, http://pantelides-dental.gr/userfiles/files/CharismaScientificInformation.pdf. Accessed April 11, 2018.
  12. Dipol®. Composite Universal. Instruction on using Dipol materials. Oksomat-AN, Ukraine Dental Products, 6–7.
  13. Kansy J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res A. 1996;374:235–244.
  14. Dlubek G, Clarke AP, Fretwell HM, Dugdale SB, Alam MA. Positron lifetime studies of free volume hole size distribution in glassy polycarbonate and polystyrene. Phys Stat Sol. 1996;A157:351–364.
  15. Dlubek G, Saarinen K, Fretwell HM. Positron states in polyethylene and polytetrafluoroethylene: A positron lifetime and Doppler-broadening study. Nucl Instrun Methods Phys Res B. 1998;142:139–155.
  16. Wang SJ, Wang CL, Zhu XG, Qi ZN. Structural characteristics of HDPE/CaCO3 polymer composites probed by positron annihilation. Phys Stat Sol. 1994;A142:275–280.
  17. Zhang M, Fang PF, Zhang SP, Wang B, Wang SJ. Study of structural characteristics of HDPE/CaCO3 nanocomposites by positrons. Rad Phys Chem. 2003;68:565–567.
  18. Jia S, Zhang Z, Fan Y, Weng H, Zhang X, Hang R. Study of the size and numerical concentration of the free volume of carbon filled HDPE composites by the positron annihilation method. Eur Polym J. 2002;38:2433–2439.
  19. Awad S, Chen HM, Grady BP, et al. Positron annihilation spectroscopy of polystyrene filled with carbon nanomaterials. Macromolecules. 2012;45:933–940.
  20. Boyko O, Shpotyuk Y, Filipecki J. Positron annihilation lifetime study of extended defects in semiconductor glasses and polymers. Phys Stat Sol C. 2013;10:121–124.
  21. Jobando VO, Quarles CA. Positron lifetime studies on the free volume changes during curing of rubber-carbon black composites. Phys Stat Sol C. 2007;4:3763–3766.
  22. Liu M, Kitai AH, Mascher P. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J Lumin. 1992;54:35–42.
  23. Madami MM, MacQueen RC, Granata RD. Positron annihilation lifetime study of PTFE/silica composites. J Polym Sci B. 1996;34:2767–2770.
  24. Kleczewska J, Bieliński DM, Dryzek E, Piątkowska A. Application of positron annihilation lifetime spectroscopy in studies of dental composites based on dimethacrylate resins. In: Pielichowski K, ed. Modern Polymeric Materials for Environmental Application. Vol. 4(1), Kraków, Poland: TEZA; 2010:143–150.
  25. Kleczewska J, Bieliński DM, Ranganathan N, Sokołowski J. Characterization of light-cured dental composites. In: Ranganathan N, ed. Materials Characterization. Modern Methods and Applications. Boca Raton, FL: CRC Press Taylor & Francis Group; 2016:117–148.
  26. Shirazinia M, Mehmandoost-Khajeh-Dad AA, Dehghani V, Mehmandoost-Khajeh-Dad J, Khaghani M. The effect of curing light intensity on free volume size in some dental composites. Polim Med. 2016;46:129–133.
  27. Filipecki J, Chamerski K, Boyko O, Kotynia K. Ageing phenomenon in acrylic polymer dental materials detected by means of positron annihilation lifetime spectroscopy. Polim Med. 2014;44:21–28.
  28. Pfeifer CS, Shelton ZR, Braga RR, Windmoller D, Machalo JC, Stansbury JW. Characterization of dimethacrylate polymeric networks: A study of the crosslinked structure formed by monomers used in dental composites. Eur Polym J. 2011;47:162–170.
  29. Kluin JE, Yu Z, Vleeshouwers S, McGervey JD, Jamieson AM, Simha R. Temperature and time dependence of free volume in bisphenol A polycarbonates studied by positron lifetime spectroscopy. Macromolecules. 1992;25:5089–5093.
  30. Kluin JE, Yu Z, Vleeshouwers S, et al. Ortho-positronium lifetime studies of free volume in polycarbonates of different structures: Influence of hole size distribution. Macromolecules. 1993;26:1853–1861.
  31. Ramani R, Ranganathaiah C. Degradation of acrylonitrile-butadiene-styrene and polycarbonate by UV irradiation. Polym Degrad Stab. 2000;69:347–354.
  32. Srithawatpong R, Peng ZL, Olson BG, et al. Positron annihilation lifetime studies of changes in free volume on cross-linking cis-polyisoprene, high-vinyl polybutadiene, and their miscible blends. J Polym Sci B. 1999;37:2754–2570.
  33. Hyla M, Filipecki J, Swiatek J, Mervinskii RI. Gamma irradiation effects on UV-cured polymers based on acrylate oligomers studied by positron annihilation lifetime spectroscopy. J Non-Cryst Solids. 2005;351:1473–1476.
  34. Shpotyuk O, Filipecki J, Ingram A, et al. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool. Nanoscale Res Lett. 2015;10:77–1–5.
  35. Shpotyuk O, Ingram A, Filipecki J, Bujňáková Z, Baláž P. Positron annihilation lifetime study of atomic imperfections in nanostructurized solids: On the parameterized trapping in wet-milled arsenic sulfides As4S4. Phys Stat Sol. 2016;B253:1054–1059.
  36. Shpotyuk O, Ingram A, Shpotyuk O. Free volume structure of acrylic-type dental nanocomposites tested with annihilating positrons. Nanoscale Res Lett. 2016;11:528–1–6.
  37. Shpotyuk O, Adamiak S, Bezvushko E, et al. Light-curing volumetric shrinkage in dimethacrylate-based dental composites by nanoindentation and PAL study. Nanoscale Res Lett. 2017;12:75–1–6.