Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2016, vol. 46, nr 1, January-June, p. 89–94

doi: 10.17219/pim/65010

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Corneal Cross-Linking: An Example of Photoinduced Polymerization as a Treatment Modality in Keratoconus

Magdalena Kubrak-Kisza1,A,B,C,D, Krystian Jerzy Kisza1,B,C, Marta Misiuk-Hojło1,A,F

1 Department and Clinic of Ophthalmology, Wroclaw Medical University, Wroclaw, Poland

Abstract

The cornea is one of the principal refractive elements in the human eye and plays a crucial role in the process of vision. Keratoconus is the most common corneal dystrophy, found mostly among young adults. It is characterized by a reduced number of collagen cross-links in the corneal stroma, resulting in reduced biomechanical stability and an abnormal shape of the cornea. These changes lead to progressive myopia, corneal thinning, central scarring and irregular astigmatism, causing severely impaired vision. Hard contact lenses, photorefractive keratectomy or intracorneal rings are the most common treatment options for refractive error caused by keratoconus. However, these techniques do not treat the underlying cause of the corneal ectasia and therefore are not able to stop the progression of the disease. Riboflavin photoinduced polymerization of corneal collagen, also known as corneal cross-linking (CXL), has been introduced as the first therapy which, by stabilizing the structure of the cornea, prevents the progression of keratoconus. It stiffens the cornea using the photo-sensitizer riboflavin in combination with ultraviolet irradiation. This is a current review of the CXL procedure as a therapy for keratoconus, which relies on photoinduced polymerization of human tissue. We have focused on its biomechanical and physiological influences on the human cornea and have reviewed the previous and current biochemical theories behind cross-linking reactions in the cornea.

Key words

cornea, keratoconus, polymerization, cross-linking

References (40)

  1. Jenkins A.D., Kratochvíl P., Stepto R.F.T., Suter U.W.: Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl. Chem. 2009, 68(12), 2287–2311.
  2. Hettlich H.J., Lucke K., Kreiner C.F.: Light-induced endocapsular polymerization of injectable lens refilling materials. Ger. J. Ophthalmol. 1992, 1(5), 346–349.
  3. Ruberti J.W., Sinha Roy A., Roberts C.J.: Corneal biomechanics and biomaterials. Ann. Rev. Biomed. Eng. 2011, 13(1), 269–295.
  4. DelMonte D.W., Kim T.: Anatomy and physiology of the cornea. J. Cataract Refract Surg. 2011, 37(3), 588–598.
  5. Bonanno J.A.: Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog. Retin. Eye Res. 2003, 22(1), 69–94.
  6. Komai Y., Ushiki T.: The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest. Ophthalmol. Vis. Sci. 1991, 32(8), 2244–2258.
  7. Iozzo R.V.: The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J. Biol. Chem. 1999, 274(27), 18843–18846.
  8. Hayashida Y., Akama T.O., Beecher N., Lewis P., Young R.D., Meek K.M. et al.: Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. Proc. Natl. Acad. Sci. USA. 2006, 103(36), 13333– 13338.
  9. Meek K.M., Quantock A.J., Boote C., Liu C.Y., Kao W.W-Y.: An X-ray scattering investigation of corneal structure in keratocandeficient mice. Matrix Biol. J. Int. Soc. Matrix Biol. 2003, 22(6), 467–475.
  10. Zhou L., Sawaguchi S., Twining S.S., Sugar J., Feder R.S., Yue B.Y.: Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Invest. Ophthalmol. Vis. Sci. 1998, 39(7), 1117–1124.
  11. Andreassen T.T., Simonsen A.H., Oxlund H.: Biomechanical properties of keratoconus and normal corneas. Exp. Eye Res. 1980, 31(4), 435–441.
  12. Jonas J.B., Nangia V., Matin A., Kulkarni M., Bhojwani K.: Prevalence and associations of keratoconus in rural maharashtra in central India: The central India eye and medical study. Am. J. Ophthalmol. 2009, 148(5), 760–765.
  13. Kennedy R.H., Bourne W.M., Dyer J.A.: A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 1986, 101(3), 267–273.
  14. Rabinowitz Y.S.: Keratoconus. Surv. Ophthalmol. 1998, 42(4), 297–319.
  15. Krachmer J.H., Feder R.S., Belin M.W.: Keratoconus and related noninflammatory corneal thinning disorders. Surv. Ophthalmol. 1984, 28(4), 293–322.
  16. Tuft S.J., Moodaley L.C., Gregory W.M., Davison C.R., Buckley R.J.: Prognostic factors for the progression of keratoconus. Ophthalmology 1994, 101(3), 439–447.
  17. Wollensak G., Spoerl E., Seiler T.: Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003, 135(5), 620–627.
  18. Equivalence of Biomechanical Changes Induced by Rapid and Standard Corneal Cross-linking, Using Riboflavin and Ultraviolet Radiation | IOVS | ARVO Journals [Internet]. [cytowane 7 lipiec 2016]. Dostępne na: http://iovs.arvojournals.org/ article.aspx?articleid= 2187529
  19. Wernli J., Schumacher S., Spoerl E., Mrochen M.: The Efficacy of Corneal Cross-Linking Shows a Sudden Decrease with Very High Intensity UV Light and Short Treatment Time. Invest. Opthalmol. Vis. Sci. 1 2013, 54(2), 1176.
  20. Beshtawi I.M., Akhtar R., Hillarby M.C., O’Donnell C., Zhao X., Brahma A. et al.: Biomechanical properties of human corneas following lowand high-intensity collagen cross-linking determined with scanning acoustic microscopy. Invest. Ophthalmol. Vis. Sci. 2013, 54(8), 5273–5280.
  21. Cınar Y., Cingü A.K., Turkcu F.M., Yüksel H., Sahin A., Yıldırım A. et al.: Accelerated corneal collagen cross-linking for progressive keratoconus. Cutan. Ocul. Toxicol. 2014, 33(2), 168–171.
  22. Buzzonetti L., Petrocelli G.: Transepithelial Corneal Cross-linking in Pediatric Patients: Early Results. J. Refract Surg. 2012, 28(11), 763–767.
  23. Tao X., Yu H., Zhang Y., Li Z., Jhanji V., Ni S. et al.: Role of Corneal Epithelium in Riboflavin/Ultraviolet-A Mediated Corneal Cross-linking Treatment in Rabbit Eyes. BioMed. Res. Int. [Internet]. 2013 [cytowane 7 lipiec 2016]; 2013. Dostępne na: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712226/
  24. Malhotra C., Shetty R., Kumar R.S., Veluri H., Nagaraj H., Shetty K.B.: In vivo imaging of riboflavin penetration during collagen cross-linking with hand-held spectral domain optical coherence tomography. J. Refract. Surg. Thorofare NJ 1995. 2012, 28(11), 776–780.
  25. Vinciguerra P., Randleman J.B., Romano V., Legrottaglie E.F., Rosetta P., Camesasca F.I. et al.: Transepithelial iontophoresis corneal collagen cross-linking for progressive keratoconus: initial clinical outcomes. J. Refract. Surg. Thorofare NJ 1995. 2014, 30(11), 746–753.
  26. Siegel R.C., Pinnell S.R., Martin G.R.: Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry (Mosc) 1970, 9(23), 4486–4492.
  27. Spoerl E., Huhle M., Seiler T.: Induction of cross-links in corneal tissue. Exp. Eye Res. 1998, 66(1), 97–103.
  28. McCall A.S., Kraft S., Edelhauser H.F., Kidder G.W., Lundquist R.R., Bradshaw H.E. et al.: Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest. Opthalmol. Vis. Sci. 2010, 51(1), 129.
  29. Bowes J.H., Raistrick A.S.: Reactivity of the ε-amino group of collagen. Nature 1965, 208, 1094–1095.
  30. McCall A.S., Kraft S., Edelhauser H.F., Kidder G.W., Lundquist R.R., Bradshaw H.E. et al.: Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest. Opthalmol. Vis. Sci. 2010, 51(1), 129.
  31. Wollensak G., Wilsch M., Spoerl E., Seiler T.: Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea. 2004, 23(5), 503–507.
  32. Vinciguerra P., Albé E., Frueh B.E., Trazza S., Epstein D.: Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am. J. Ophthalmol. 2012, 154(3), 520–526.
  33. Chatzis N., Hafezi F.: Progression of keratoconus and efficacy of corneal collagen cross-linking in children and adolescents. J. Refract. Surg. 2012, 28(11), 753–758.
  34. Seyedian M.A., Aliakbari S., Miraftab M., Hashemi H., Asgari S., Khabazkhoob M.: Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr. J. Ophthalmol. 2015, 22(3), 340–345.
  35. Wollensak G., Wilsch M., Spoerl E., Seiler T.: Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea. 2004, 23(5), 503–507.
  36. Spoerl E., Wollensak G., Dittert D-D, Seiler T.: Thermomechanical behavior of collagen-cross-linked porcine cornea. Ophthalmologica 2004, 218(2), 136–140.
  37. Spoerl E., Wollensak G., Seiler T.: Increased resistance of crosslinked cornea against enzymatic digestion. Curr. Eye Res. 2004, 29(1), 35–40.
  38. Wollensak G., Wilsch M., Spoerl E., Seiler T.: Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea. 2004, 23(5), 503–507.
  39. Abalain J.H., Dossou H., Colin J., Floch H.H.: Levels of collagen degradation products (telopeptides) in the tear film of patients with keratoconus. Cornea. 2000, 19(4), 474–476.
  40. Wollensak G., Redl B.: Gel electrophoretic analysis of corneal collagen after photodynamic cross-linking treatment. Cornea. 2008, 27(3), 353–356.