Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2016, vol. 46, nr 1, January-June, p. 79–87

doi: 10.17219/pim/65099

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Thermoplastic Elastomers: Materials for Heart Assist Devices

Agnieszka Piegat1,A,B,C,D,E,F, Mirosława El Fray1,A,B,C,D,E,F

1 West Pomeranian University of Technology, Szczecin, Poland

Abstract

Heart assisting devices have become a standard element in clinical practice and provide support for the traditional methods of treating heart disease. Regardless of the construction of VAD (ventricular assist devices), there are crucial requirements that have to be met by the construction materials: high purity, desired physical, chemical and mechanical properties, easy fabrication and high stability and susceptibility to sterilization. They must not cause thrombosis, destroy cellular elements, alter plasma protein, destroy enzymes, deplete electrolytes, cause immune response and cancer, and must not produce toxic and allergic reactions, when they are applied in direct contact with biological tissues and fluids. This paper provides an overview of the polymeric materials as construction materials for cardiovascular support systems, focusing on the group of thermoplastic elastomers, mainly polyurethane and polyester based ones. It also highlights the advantages and disadvantages of currently used materials and the progress in the design of new materials with potential application in the biomedical field.

Key words

polymeric materials, polymer design, thermoplastic elastomers, blood contacting materials

References (41)

  1. Chestnov O.: WHO – Global status report on noncommunicable diseases 2014. 2014, doi: ISBN 9789241564854.
  2. Schollenberger C.S., Jones J.F.: Polyurethane coated articles. US Patent 3030249, Publication Date:04/17/1962, Filing Date:03/17/1958.
  3. Korley L.T.J., Pate B.D., Thomas E.L., Hammond P.T.: Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer (Guildf) 2006, 47, 3073–3082.
  4. Li Y., Kang W., Stoffer J.O., Chu B.: Effect of hard-segment flexibility on phase separation of segmented polyurethanes. Macromolecules 1994, 27, 612–614.
  5. Miller J.A., Lin S.B., Hwang K.K.S., Wu K.S., Gibson P.E., Cooper S.L.: Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules 1985, 18, 32–44.
  6. Boretos J.W., Pierce W.S.: Segmented polyurethane: A new elastomer for biomedical applications. Science 1967, 158, 1481–1482.
  7. Martin D.J., Meijs G.F., Gunatillake P.A., Yozghatlian S.P., Renwick G.M.: The influence of composition ratio on the morphology of biomedical polyurethanes. J. Appl. Polym. Sci. 1999, 937–952.
  8. Labow R.S., Meek E., Santerre J.P.: Model systems to assess the destructive potential of human neutrophils and monocytederived macrophages during the acute and chronic phases of inflammation. J. Biomed. Mater. Res. 2001, 54, 189–197.
  9. Stokes K.B., Davis W.: Environmental stress cracking in implanted polyurethane devices. [In:] Adv. Biomed. Polym. Ed.: Gebelein C.G. Plenum Press, 1987, 147–158.
  10. Santerre J.P., Woodhouse K., Laroche G., Labow R.S.: Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 2005, 26, 7457–70
  11. Zhao Q., Agger M.P., Fitzpatrick M., Anderson J.M., Hiltner A., Stokes K., Urbanski P.: Cellular interactions with biomaterials: in vivo cracking of pre-stressed Pellethane 2363-80A. J. Biomed. Mater. Res. 1990, 24, 621–637.
  12. Wu Y., Zhao Q., Anderson J.M., Hiltner A., Lodoen G.A., Payet C.R.: Effect of some additives on the biostability of a poly(etherurethane) elastomer. J. Biomed. Mater. Res. 1991, 25, 725–739.
  13. Schubert M.A., Wiggins M.J., Anderson J.M., Hiltner A.: Comparison of two antioxidants for poly(etherurethane urea) in an accelerated in vitro biodegradation system. J. Biomed. Mater. Res. 1997, 34, 493–505.
  14. Ward B., Anderson J., McVenes R., Stokes K.: In vivo biostability of polyether polyurethanes with fluoropolymer surface modifying endgroups: Resistance to biologic oxidation and stress cracking. J. Biomed. Mater. Res. A. 2006, 79, 827–835.
  15. Szelest-Lewandowska A., Masiulanis B., Szymonowicz M., Pielka S., Paluch D.: Modified polycarbonate urethane: Synthesis, properties and biological investigation in vitro. J. Biomed. Mater. Res. 2007, 82A, 509–520.
  16. Tanzi M.C., Mantovani D., Petrini P., Guidoin R., Laroche G.: Chemical stability of polyether urethanes versus polycarbonate urethanes. J. Biomed. Mater. Res. 1997, 36, 550–559.
  17. Deschamps A.A., Claase M.B., Sleijster W.J., de Bruijn J.D., Grijpma D.W., Feijen J.: Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone. J. Control. Release 2002, 78, 175–186.
  18. Deschamps A.A., Grijpma D.W., Feijen J.: Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: The effect of copolymer composition on physical properties and degradation behavior. Polymer (Guildf) 2001, 42, 9335–9345.
  19. Tsukada H., Osada H.: Experimental study of a new tracheal prosthesis: Pored Dacron tube. J. Thorac. Cardiovasc. Surg. 2004, 127, 877–884.
  20. Davidovic L., Jakovljevic N., Radak D., Dragas M., Ilic N., Koncar I., Markovic D.: Dacron or ePTFE graft for above-knee femoropopliteal bypass reconstruction. A bi-centre randomised study. Vasa 2010, 39, 77–84.
  21. Piegat A., El Fray M.: Poly(ethylene terephthalate) modification with the monomer from renewable resources. Polimery 2007, 52, 885–888.
  22. Williams D.F.: On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953.
  23. Crombez M., Chevallier P., Gaudreault R.C., Petitclerc E., Mantovani D., Laroche G.: Improving arterial prosthesis neoendothelialization: Application of a proactive VEGF construct onto PTFE surfaces. Biomaterials 2005, 26, 7402–7409.
  24. Kim Y.J., Kang I.K., Huh M.W., Yoon S.C.: Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 2000, 21, 121–130.
  25. Chandy T., Das G.S., Wilson R.F., Rao G.H.R.: Use of plasma glow for surface-engineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis. Biomaterials 2000, 21, 699–712.
  26. Tao S., Chen L., Zheng Y., Xu Y., Chen J., Yu H.: Proliferation of endothelial cell on polytetrafluoroethylene vascular graft materials carried VEGF gene plasmid. J. Zhejiang Univ. Sci. B. 2006, 7, 421–428.
  27. Chevallier P., Janvier R., Mantovani D., Laroche G.: In vitro biological performances of phosphorylcholine-grafted ePTFE prostheses through RFGD plasma techniques. Macromol. Biosci. 2005, 5, 829–839.
  28. Roy-Chaudhury P., Kelly B.S., Miller M.A., Reaves A., Armstrong J., Nanayakkara N., Heffelfinger S.C.: Venous neointimal hyperplasia in polytetrafluoroethylene dialysis grafts. Kidney Int. 2001, 59, 2325–2334.
  29. Chollet C., Chanseau C., Brouillaud B., Durrieu M.C.: RGD peptides grafting onto poly(ethylene terephthalate) with well controlled densities. Biomol. Eng. 2007, 24, 477–482.
  30. Chollet C., Chanseau C., Remy M., Guignandon A., Bareille R., Labrugère C., Bordenave L., Durrieu M.C.: The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Biomaterials 2009, 30, 711–720.
  31. Pandiyaraj K.N., Selvarajan V., Rhee Y.H., Kim H.W., Shah S.I.: Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties. Mater. Sci. Eng. C. 2009, 29, 796–805.
  32. Devine C., McCollum C.: Heparin-bonded Dacron or polytetrafluorethylene for femoropopliteal bypass: Five-year results of a prospective randomized multicenter clinical trial. J. Vasc. Surg. 2004, 40, 924–931.
  33. Kapadia M.R., Popowich D.A., Kibbe M.R.: Modified prosthetic vascular conduits. Circulation. 2008, 117, 1873–1882.
  34. Cassady A.I., Hidzir N.M., Grøndahl L.: Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterials applications. J. Appl. Polym. Sci. 2014, 131.
  35. Jordan S.W., Faucher K.M., Caves J.M., Apkarian R.P., Rele S.S., Sun X.L., Hanson S.R., Chaikof E.L.: Fabrication of a phospholipid membrane-mimetic film on the luminal surface of an ePTFE vascular graft. Biomaterials 2006, 27, 3473–3481.
  36. Xu J.-P., Wang X.-L., Fan D.-Z., Ji J., Shen J.-C.: Construction of phospholipid anti-biofouling multilayer on biomedical PET surfaces. Appl. Surf. Sci. 2008, 255, 538–540.
  37. Van Lith R., Ameer G.A.: Biohybrid Startegies for Vascular Grafts. [In:] Tissue Eng. From Lab to Clin. 2011, 279–316.
  38. Kirchhof K.: Mobile heart-lung machine. 2005, 1–6.
  39. Haishima Y., Matsuda R., Hayashi Y., Hasegawa C., Yagami T., Tsuchiya T.: Risk assessment of di(2-ethylhexyl)phthalate released from PVC blood circuits during hemodialysis and pump-oxygenation therapy. Int. J. Pharm. 2004, 274, 119–129.
  40. Merchan M., Sedlarikova J., Friedrich M., Sedlarik V., Saha P.: Thermoplastic modification of medical grade polyvinyl chloride with various antibiotics: effect of antibiotic chemical structure on mechanical, antibacterial properties, and release activity. Polym. Bull. 2011, 67, 997–1016.
  41. Zha Z., Ma Y., Yue X., Liu M., Dai Z.: Self-assembled hemocompatible coating on poly (vinyl chloride) surface. Appl. Surf. Sci. 2009, 256, 805–814.