Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2016, vol. 46, nr 1, January-June, p. 17–23

doi: 10.17219/pim/62279

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Creative Commons BY-NC-ND 3.0 Open Access

Investigation of the Degree of Disorder of the Structure of Polymer Soft Contact Lenses Using Positron Annihilation Lifetime Spectroscopy PALS

Jacek Filipecki1,A,E,F, Katarzyna Kotynia2,A,B,C,D, Katarzyna Filipecka1,A,B,C,D

1 Institute of Physics, Faculty of Mathematics and Natural Sciences, Jan Dlugosz University, Częstochowa, Poland

2 Institute of Physics, Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, Częstochowa, Poland

Abstract

Background. Hydrogel and silicone-hydrogel polymeric materials are widely used in ophthalmology for the manufacture of contact lenses. An important aspect is the investigation of the structure of these materials.
Objectives. This study has been conducted in order to compare the degree of disorder and presence of free volumes in the internal structure of the polymeric soft contact lenses Omafilcon A (hydrogel) and Comfilcon A (silicone-hydrogel). Differences in the occurrence of trapping centers for positrons and free volumes between the types of investigated contact lenses have been demonstrated.
Material and Methods. Two types of polymeric contact lenses were used as materials: Omafilcon A (hydrogel) and Comfilcon A (silicone-hydrogel). The study was performed using positron annihilation lifetime spectroscopy (PALS).
Results. When the results of the measurements has been obtained, a graphical curve has created to describe the relationship of the number of annihilation acts in time. Significant changes were observed between the contact lenses investigated in positron trapping in macropores (based on a two-state model) and the presence of free volumes (based on the Tao-Eldrup model).
Conclusion. The use of the positron annihilation two-state model made it possible to demonstrate that a higher positron trapping rate in macropores occurs in the silicone-hydrogel contact lens. Additionally, calculations using the Tao-Eldrup model show the existence of free volumes in both types of materials. The size and fraction of free volumes is much larger in the silicone-hydrogel contact lens.

Key words

free volumes, polymers, defects, contact lenses, positron annihilations

References (23)

  1. Gupta P., Vermari K., Garg S.: Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 2002, 10, 569–578.
  2. Peppas N.A., Merrill E.W.: Hydrogels as swollen elastic networks. J. Appl. Sci. 1977, 21, 1763–1770.
  3. Graham N.B., McNeill M.E.: Hydrogels for controlled drug delivery. Biomaterials 1984, 5, 27–36.
  4. Szymankiewicz S.: Soczewki kontaktowe korekcyjne i lecznicze. Powikłania (Corrective and therapeutic contact lenses. Complications). Unia Ed., Katowice, Poland 1997.
  5. Ache H.J.: Chemistry of the positron and positronium. Angewandte Chemie – International Edition 1972, 11, 179–199.
  6. Filipecki J., Kocela A., Korzekwa P., Miedzinski R., Filipecka K., Golis E., Korzekwa W.: Structural study of polymer hydrogel contact lenses by means of positron annihilation lifetime spectroscopy and UV-vis-NIR methods. J. Mater. Sci. Mater. Med. 2013, 24, 1837–1842.
  7. Jean Y.C., Van Horn J.D., Wei-Song Hung W., Lee K.R.: Perspective of positron annihilation spectroscopy in polymers. Macromolecules 2013, 46, 7133–7145.
  8. Deepa Urs M.V., Ranganathaiah C.C.: Influence of spoliation in poly(2-hydroxy ethyl methacrylate) soft contact lens on its free volume and optical transparency. J. Mater. Sci. Mater. Med. 2008, 19, 1355–1361.
  9. Sane P., Tuomisto F., Holopainen J.M.: Void volume variations in contact lens polymers. Cont. Lens Anterior Eye 2011, 34, 2–6.
  10. Filipecki J., Kocela A., Korzekwa P., Filipecka K., Golis E., Korzekwa W.: Investigation of free volume changes in the structure of the polymer bifocal contact lenses using positron lifetime spectroscopy PALS. Polim. Med. 2011, 44, 13–21.
  11. Tao S.J.: Positron annihilation in molecular substances. J. Chem. Phys. 1972, 56, 5499–5510.
  12. Eldrup M., Lighbody L., Sherwood J.N.: Positron annihilation in polymers. Chem. Phys. 63 (1981) 51–58.
  13. Shao-Jie W., Zhong-Xun T., De-Chong T.: Positron Annihilation. World Scientific Publishing Co. Pte. Ltd., Singapore 1985.
  14. Liao K.S., Chen H., Awad S., Yuan J.P., Hung W.S., Lee K.R., Lai Y., Hu C.C., Jean Y.C.: Determination of free-volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy. Macromolecules 2011, 44, 6818–6826.
  15. Pathrick R.A.: Positron annihilation – a probe for nanoscale voids and free volume. Prog. Polym. Sci. 1997, 22, 1–47.
  16. Krause-Rehberb K., Leipner H.S.: Positron annihilation in semiconductors. Defect Studies. Springer-Verlag, Berlin-HeidelbergNew York 1999.
  17. Shpotyuk O., Filipecki J.: Free volume in vitreous chalcogenide semiconductors: Possibilities of positron annihilation lifetime study. Ed. WSP Częstochowa, Poland 2003.
  18. Pult H., Purslow C., Berry M., Murphy P.J.: Clinical tests for successful contact lens wear: Relationship and predictive potential. Optom. Vis. Sci. 2008, 85, 924–929.
  19. Kotynia K., Kocela A., Filipecki J., Filipecka K., Korzekwa P., Golis E.: Structural studies of polymer hydrogel and silicone hydrogel contact lenses by means of positron lifetime spectroscopy methods. Polim. Med. 2013, 43, 21–28.
  20. Filipecki J., Golis E., Reben M., Filipecka K., Kocela A., Wasylak J.: Positron life time spectroscopy as a method to study of the defect degree materials with disordered structure. Optoelectron. Adv. Mater. – Rapid Communnication 2013, 7, 1029–1031.
  21. Reben M., Golis E., Filipecki J., Sitarz M., Kotynia K., Jelen P., Grelowska I.: Voids in mixed-cation silicate glasses: Studies by positron annihilation lifetime and Fourier transform infrared spectroscopies. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 2014, 129, 643–648.
  22. Kansy J.: Microcomputer program for analysis of positron annihilation lifetime spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1996, 374, 235–244.
  23. Filipecki J., Sitarz M., Kocela A., Kotynia K., Jelen P., Filipecka K., Gaweda M.: Studying functional properties of hydrogel and silicone-hydrogel contact lenses with PALS, MIR and Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 131, 686–690.