Polymers in Medicine
2016, vol. 46, nr 1, January-June, p. 101–104
doi: 10.17219/pim/65053
Publication type: review article
Language: English
Download citation:
Polymers as Carriers of Gentamicin in Traumatology and Orthopedic Surgery – Current State Of Knowledge
1 University Clinical Hospital in Wroclaw, Wroclaw Medical University, Wrocław, Poland
2 Department of Traumatology, Clinic of Traumatology and Hand Surgery, Wroclaw Medical University, Wrocław, Poland
Abstract
Osteomyelitis in patients undergoing surgery because of injuries and diseases of the musculoskeletal system is a serious clinical, economic and social problem. It is one of the greatest therapeutic challenges in traumatology and orthopedic surgery. To achieve the best results in the treatment of osteomyelitis, surgical debridement and intravenous antibiotic therapy is supported by local antibiotic delivery. Many different substances can be used as drug carriers. In this study we present and compare some polymers used as carriers of gentamicin. Some of them, such as poly(methyl methacrylate), are well known and have been used for 30 years, and others, such as polycaprolactone, polyacrylic acid, polyanhydrides, poly-trimethylene carbonate, polylactide, polyglycolide and poly(trimethylene carbonate), are perspectives for the future. In this study, we have tried to briefly present all of these polymers and compare some of their features. We have concentrated on the pharmacokinetics and bioactivity of such implants, which are important aspects for their potential practical use.
Key words
polymers, gentamicin, osteomyelitis, drug carriers
References (34)
- Oliveira P.R., Carvalho V.C., da Silva Felix C., de Paula A.P., Santos-Silva J., Lima A.L.: The incidence and microbiological profile of surgical site infections following internal fixation of closed and open fractures. Rev. Bras. Ortop. 2016, 51, 396–399. DOI: 10.1016/j.rboe.2015.09.012.
- Parkkinen M., Madanat R., Lindahl J., Mäkinen T.J.: Risk factors for deep infection following plate fixation of proximal tibial fractures. J. Bone Joint Surg. Am. 2016, 98, 1292–1297. DOI: 10.2106/JBJS.15.00894.
- Manian F.A., Kelly E.: Lower extremity acute bacterial skin and soft tissue infection following total knee arthroplasty. Am. J. Med. Sci. 2016, 352, 154–158. DOI: 10.1016/j.amjms.2016.05.004.
- Barbero J.M., Montero E., Vallés A., Plasencia M.A., Romanyk J., Gómez J.: Prosthetic joint infection in patients with hip fracture. Differences from infection of elective prosthesis. Rev. Esp. Quimioter. 2016. pii: barbero28jul2016 [Ahead of print].
- Gustilo R.B., Anderson J.T.: Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: Retrospective and prospective analyses. J. Bone Joint Surg. Am. 1976, 58, 453–458.
- Landor I., Vavrík P., Jahoda D.: General principles of infection treatment in joint replacements. Acta Chir. Orthop. Traumatol. Cech. 2005, 72, 183–190.
- Landersdorfer C.B., Bulitta J.B., Kinzig M., Holzgrabe U., Sörgel F.: Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin. Pharmacokinet. 2009, 48, 89–124. DOI: 10.2165/0003088- 200948020-00002.
- Traunmuller F., Schintler M.V., Metzler J. et al.: Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J. Antimicrob. Chemother. 2010, 65, 1252–1257. DOI: 10.1093/jac/dkq109.
- Garazzino S., Aprato A., Baietto L. et al.: Glycopeptide bone penetration in patients with septic pseudoarthrosis of the tibia. Clin. Pharmacokinet. 2008, 47, 793–805. DOI: 10.2165/0003088-200847120-00004.
- Von Baum H., Böttcher S., Abel R., Gerner H.J., Sonntag H.G.: Tissue and serum concentrations of levofloxacin in orthopaedic patients. Int. J. Antimicrob. Agents 2001, 18, 335–340.
- Lew D.P., Waldvogel F.A.: Osteomyelitis. N. Engl. J. Med. 1997, 336, 999–1007.
- Lew D.P., Waldvogel F.A.: Osteomyelitis. Lancet 2004, 364, 369–379.
- Cierny G. 3rd, Mader J.T., Penninck J.J.: A clinical staging system for adult osteomyelitis. Clin. Orthop. Relat. Res. 2003, 414, 7–24.
- Mader J.T., Shirtliff M., Calhoun J.H.: Staging and staging application in osteomyelitis. Clin. Infect. Dis. 1997, 25, 1303–1309.
- Walter G., Kemmerer M., Kappler C., Hoffmann R.: Treatment algorithms for chronic osteomyelitis. Dtsch. Arztebl. Int. 2012, 109, 257–264. DOI: 10.3238/arztebl.2012.0257.
- Calhoun J.H., Manring M.M.: Adult osteomyelitis. Infect. Dis. Clin. North Am. 2005, 19, 765–786.
- Cancienne J.M., Burrus M.T., Weiss D.B., Yarboro S.R.: Applications of local antibiotics in orthopedic trauma. Orthop. Clin. North Am. 2015, 46, 495–510. DOI: 10.1016/j.ocl.2015.06.010.
- Lalidou F., Kolios G., Drosos G.I.: Bone infections and bone graft substitutes for local antibiotic therapy. Surg. Technol. Int. 2014, 24, 353–362.
- Seligson D., Berling S.: Antibiotic-laden PMMA bead chains for the prevention of infection in compound fractures: current state of the art. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 969–974. DOI: 10.1007/s00590-015-1652-z.
- Klemm K.: The use of antibiotic-containing bead chains in the treatment of chronic bone infections. Clin. Microbiol. Infect. 2001, 7, 28–31.
- Zimmer K.: Use of mini-septopal in trauma surgery of the hand. Experimental and clinical studies. Polim. Med. 1996, 26, 3–57.
- Zalavras C.G., Patzakis M.J., Holtom P.: Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin. Orthop. Relat. Res. 2004, 427, 86–93.
- Teo E.Y., Ong S.Y., Chong M.S. et al: Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds. Biomaterials 2011, 32, 279–287. DOI: 10.1016/j.biomaterials.2010.08.089.
- Changez M., Koul V., Dinda A.K.: Efficacy of antibiotics-loaded interpenetrating network (IPNs) hydrogel based on poly(acrylic acid) and gelatin for treatment of experimental osteomyelitis: in vivo study. Biomaterials 2005, 26, 2095–2104.
- Laurencin C.T., Gerhart T., Witschger P. et al: Bioerodible polyanhydrides for antibiotic drug delivery: in vivo osteomyelitis treatment in a rat model system. J. Orthop. Res. 1993, 11, 256–262.
- Neut D., Kluin O.S., Crielaard B.J., van der Mei H.C., Busscher H.J., Grijpma D.W.: A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis. Acta Orthop. 2009, 80, 514–519. DOI: 10.3109/17453670903350040.
- Morawska-Chochół A., Domalik-Pyzik P., Chłopek J. et al.: Gentamicin release from biodegradable poly-l-lactide based composites for novel intramedullary nails. Mater Sci. Eng. C Mater. Biol. Appl. 2014, 45, 15–20. DOI: 10.1016/j. msec.2014.08.059.
- Dorati R., DeTrizio A., Genta I. et al.: An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 909–917. DOI: 10.1016/j.msec.2015.09.053.
- Wahlig H., Dingeldein E., Bergmann R., Reuss K.: Experimental and pharmacokinetic studies with gentamicin PMMA beads. Zentralbl. Chir. 1979, 104, 923–933.
- Sun H., Mei L., Song C., Cui X., Wang P.: The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006, 27, 1735–1740.
- Chang H.I., Lau Y.C., Yan C., Coombes A.G.: Controlled release of an antibiotic, gentamicin sulphate, from gravity spun polycaprolactone fibers. J. Biomed. Mater. Res. A 2008, 84, 230–237.
- Bergsma J.E., de Bruijn W.C., Rozema F.R., Bos R.R., Boering G.: Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 1995, 16, 25–31.
- Gunatillake P.A., Adhikari R.: Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003, 5, 1–16.
- Pihlajamäki H.K., Salminen S.T., Tynninen O., Böstman O.M., Laitinen O.: Tissue restoration after implantation of polyglycolide, polydioxanone, polylevolactide, and metallic pins in cortical bone: An experimental study in rabbits. Calcif. Tissue Int. 2010, 87, 90–98. DOI: 10.1007/s00223-010-9374-z.




