Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2015, vol. 45, nr 1, January-June, p. 11–19

Publication type: original article

Language: English

Creative Commons BY-NC-ND 3.0 Open Access

Crosslinked Porous Starch Particles – a Promising Carrier

Tarique Ali Meer1,A,C,D,E, Kailas Moravkar1,B, Jaywant Pawar1,B, Purnima Amin1,E,F

1 Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India

Abstract

Background. Starch is one of the most potential natural polymers used for various bio applications. Literature reports a number of modification strategies such as physical, chemical, enzymatic and genetic to enhance the positive attributes and iron out the undesired features of neat starch.
Objectives. To synthesize a crosslinked porous starch (CPS) as an efficient cargo for the delivery of calcium carbonate in an efficiently controlled manner for the treatment of hyperphosphatemia.
Material and Methods. The CPS carrier was synthesized using a natural crosslinker, malic acid. The drug delivery system was formulated, followed by the in situ loading of calcium carbonate during the preparation of the CPS. The developed system was characterized with respect to FTIR, DSC, SEM, moisture content, zeta potential, encapsulation efficiency, phosphate binding efficiency and dissolution studies.
Results. The developed formulation was observed to deliver calcium carbonate in an enterically controlled manner. The binding of calcium to phosphate was established to be pH dependent and efficient at pH 7. The moisture content of CPS was in the range of 0.2–0.8%. The zeta potential of the colloidal system was noted to be sufficiently high, indicating the stability. The encapsulation efficiency of CPS particles for calcium was found to be 88–96%
Conclusion. An efficient, cost-effective, facile and commercially-viable formulation was demonstrated to deliver calcium carbonate for the treatment of hyperphosphatemia.

Key words

calcium carbonate, crosslinked porous starch, hyperphosphatemia, delayed release, phosphate binding

References (48)

  1. Ayorinde J.O., Itiola A.O., Odeniyi M.A.: Effects of excipients and formulation types on compressional properties of diclofenac. Acta Pol. Pharm. 2013, 70, 557–566.
  2. Wilson B., Babubhai P.P., Sajeev M.S., Jenita J.L., Priyadarshini SR: Sustained release enteric coated tablets of pantoprazole: formulation, in vitro and in vivo evaluation. Acta Pharm. 2013, 63, 131–140.
  3. Hanson B., Cox B., Kaliviotis E., Smith C.H.: Effects of saliva on starch-thickened drinks with acidic and neutral pH. Dysphagia. 2012, 27, 427–435.
  4. Odeku O.A., Akinwande B.L.: Effect of the mode of incorporation on the disintegrant properties of acid modified water and white yam starches. Saudi Pharm. J. 2012, 20, 171–175.
  5. Namazi H., Dadkhah H.: Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr. Polym. 2010, 79, 731–737.
  6. Angellier H., Molina-Boisseau S., Dole P., Dufresne A.: Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules 2006, 7, 531–539.
  7. Xu Y., Ding W., Liu J., Li Y., Kennedy J.F., Gu Q.: Preparation and characterization of organic-soluble acetylated starch nanocrystals. Carbohydr. Polym. 2010, 80, 1078–1084.
  8. Kim C.H., Cho K.Y., Park J.K.: Reactive blends of gelatinized starch and polycaprolactone-g-glycidyl methacrylate. J. Appl. Polym. Sci. 2001, 81, 1507–1516.
  9. Meer T.A., Fule R.A., Sav A.K., Amin P.D.: Porous starch: a novel carrier for solubility enhancement of carbamazepine. AAPS PharmSciTech. 2013, 14, 919–926.
  10. Guan J.J., Hanna M.A.: Extruding foams from corn starch acetate and native corn starch. Biomacromolecules 2004, 5, 2329– –2339.
  11. Torres F.G., Boccaccini A.R., Troncoso O.P.: Microwave processing of starch based porous structures for tissue engineering scaffolds. J. Appl. Polym. Sci. 2007, 103, 1332–1339.
  12. Manoi K., Rizvi S.S.H.: Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydr. Polym. 2010, 81, 687–694.
  13. Antonio G.B., Pereira A.R., Fajardo S.N., Celso V.N., Adley F.R., Edvani C.M.: Starch-based microspheres for sustainedrelease of curcumin: Preparation and cytotoxic effect on tumor cells. Carbohydr. Polym. 2013, 98, 711–720.
  14. Khachatryan K., Khachatryan G., Fiedorowicz M., Para A., Tomasik P.: Formation of nanometal particles in the dialdehyde starch matrix. Carbohydr. Polym. 2013, 98, 568–573.
  15. Olsson E., Hedenqvist M.S., Johansson C., Järnström L.: Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr. Polym. 2013, 94, 765–772.
  16. Kutyła M.J., Lambert L.K., Davies N.M., McGeary R.P., Shaw P.N., Ross B.P.: Cyclodextrin-crosslinked poly(acrylic acid): Synthesis, physicochemical characterization and controlled release of diflunisal and fluconazole from hydrogels. Int. J. Pharm. 2013, 444, 175–184.
  17. Aschenbrenner E., Bley K., Koynov K., Makowski M., Kappl M., Landfester K., Weiss C.K.: Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. Langmuir. 2013, 29, 8845–8855.
  18. Www.efsa.europa.eu accessed on 25th October 2013.
  19. Zamfirescu I., Carlson H.E.: Absorption of Levothyroxine when co-administered with various calcium formulations. Thyroid 2011, 21, 483–486.
  20. Http://www.fosrenol.com/clinical-trials.aspx accessed on 25th October 2013.
  21. Kaur L., Singh J., Singh N.: Effects of cross-linking on some properties of potato starches. J. Sci. Food Agric. 2006, 86, 1945– –1954.
  22. Reddy I., Seib P.A.: Paste properties of modified starches from partial waxy wheats. Cereal Chem. 1999, 76, 341–349.
  23. Tester R.F., Morrison W.R.: Swelling and gelatinization of cereal starches I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 1990, 67, 551–557.
  24. Schoch T.J.: Swelling power and solubility of starch granules. [In:] Methods in carbohydrate chemistry, Ed.: R.L. Whistler, 1964, 4, 106–108. Academic Press, Orlando, Florida.
  25. Englyst H.N., Kingman S.M., Cummings J.H.: Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50.
  26. Meer T.A., Sawant K.P., Amin P.D.: Liquid antisolvent precipitation process for solubility modulation of bicalutamide. Acta Pharm. 2011, 61, 435–445.
  27. Meer T.A., Fule R.A., Sav A.K., Amin P.D.: Fabrication of cyclodextrin-templated mesoporous silica for improved dissolution of carbamazepine. Drug Deliv. Transl. Res. 2013, 3, 235–242.
  28. Seidel C., Kulicke W., Heß C., Hartmann B., Lechner M.D., Lazik W.: Influence of the Cross-linking Agent on the Gel Structure of Starch Derivatives Influence of the Cross-linking Agent on the Gel Structure of Starch Derivatives. Starch 2001, 53, 305–310.
  29. Lin Y.H., Liang H.F., Chung C.K., Chen M.C., Sung H.W.: Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 2005, 26, 2105–2113.
  30. Lim S.T., Seib P.A.: Location of phosphate esters in a wheat starch phosphate by 31P-nuclear magnetic resonance spectroscopy. Cereal Chem. 1993, 70, 145–152.
  31. Morikawa K., Nishinari K.: Effects of concentration dependence of retrogradation behaviour of dispersions for native and chemically modified potato starch. Food Hydrocolloid. 2001, 14, 395–401.
  32. Reddy I., Seib P.A.: Modified waxy wheat starch compared to modified waxy corn starch. J. Cereal Sci. 2000, 31, 25–39.
  33. Mirmoghtadaie L., Kadivar M., Shahedi M.: Effects of cross-linking and acetylation on oat starch properties. Food Chem. 2009, 116, 709–713.
  34. Chung H.J., Woo K.S., Lim S.T.: Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydr. Polym. 2004, 55, 9–15.
  35. Janzen G.L.: Digestibility of starches and phosphatized starches by means of pancreatin. Starch/Stärke. 1969, 38, 231–237.
  36. Jyothi A.N., Moorthy S.N., Rajasekharan V.: Effects of cross linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch/Stärke. 2006, 58, 292–299.
  37. Shin S.I., Kim H.J., Ha H.J., Lee S.H., Moon T.H.: Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible nonpasted granular sweet potato starch. Starch/Stärke. 2005, 57, 421–430.
  38. Spence K.E., Jane J.: Chemical and physical properties of ginko (Ginko biloba) starch. Carbohydr. Polym. 1999, 67, 261–269.
  39. Chung H.J., Shin D.H., Lim S.T.: In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Res. Int. 2008, 41, 579–585.
  40. Han J.A., BeMiller J.N.: Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr. Polym. 2007, 67, 366–374.
  41. Koo S.H., Lee K.Y., Lee H.G.: Effect of crosslinking on physicochemical and physiological properties of corn starch. Food hydrocolloids. 2010, 24, 619–625.
  42. Kumar R., Nagarwal R.C., Dhanawat M., Pandit, J.K.: In-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles. J. Biomedl. Nanotechnol. 2011, 7, 325–333.
  43. Yu C., Cao H., Zhang X., Zhou F., Cheng S., Zhang X., Zhuo R.: Hybrid nanospheres and vesicles based on pectin as drug carriers. Langmuir. 2009, 25, 11720–11726.
  44. Shende P., Deshmukh K., Trotta F., Caldera F.: Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int. J. Pharm. 2013, 456, 95–100.
  45. Park J.H., Ye M., Park K.: Biodegradable polymers for microencapsulation of drugs. Molecules. 2005, 10, 146–161.
  46. Ranganathan N.: US 8,257,750 B2, 2012.
  47. Deshmukh G.S., Pathak S.U., Peshwe D.R., Ekhe J.D.: Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites. Bull. Mater. Sci. 2010, 33, 277–284.
  48. Tarique M., Ritesh F., Dipak K., Purnima A.: Solubility modulation of bicalutamide using porous silica. J. Pharm. Investig. 2013, 43, 279–285.