Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2014, vol. 44, nr 3, July-September, p. 189–196

Publication type: review article

Language: Polish

Nowoczesne polimery w technologii tabletek matrycowych

Modern Polymers in Matrix Tablets Technology

Łukasz Zimmer1,A,B,C,D,E,F, Regina Kasperek1,B,C,E, Ewa Poleszak1,E,F

1 Katedra i Zakład Farmacji Stosowanej Uniwersytetu Medycznego w Lublinie, Lublin, Polska

Streszczenie

Tabletki matrycowe są najbardziej popularną metodą doustnego podawania leku z kontrolowaną szybkością uwalniania. Są otrzymywane przez umieszczenie substancji leczniczej w polimerowej matrycy. Głównym zadaniem systemu matrycowego jest przedłużenie profilu uwalniania leku w celu utrzymania jego stałego stężenia we krwi, zmniejszenie częstotliwości podawania oraz ułatwienie stosowania leku przez pacjenta. Polimerowe tabletki matrycowe wykazują duży potencjał jako doustne kontrolowane systemy dostarczania leku. Często stosowanym półsyntetycznym polimerem używanym jako matryca jest hydroksypropylometyloceluloza (HPMC). Również inne rodzaje polimerów mogą być stosowane do tego celu, m.in.: Kollidon® SR, polimery kwasu akrylowego: Eudragit® i Carbopol®. Polimery pochodzenia naturalnego, np.: karagen, chitozan, alginiany używane w przemyśle spożywczym i kosmetycznym, także stały się przedmiotem badań w farmacji i są stosowane w technologii tabletek matrycowych. Zastosowanie nowoczesnych polimerów umożliwia otrzymanie tabletek matrycowych w drukarkach 3D, co otwiera nowe możliwości rozwoju formulacji postaci leku. W niniejszej publikacji opisano polimery stosowane w technologii tabletek matrycowych oraz przykłady ich zastosowania.

Abstract

Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon® SR, acrylic acid polymers such as Eudragits® and Carbopols®. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

Słowa kluczowe

polimery, tabletki matrycowe, kontrolowane uwalnianie, podawanie leku, substancje pomocnicze

Key words

polymeric materials, matrix tablets, controlled release, drug delivery, excipients

References (59)

  1. Sangmun S., Du Hyung Ch., Nguyen Khoa T., Nam Ah K., Kyung Rok Ch., Seong Hoon J.: Time-oriented experimental design method to optimize hydrophilic matrix formulations with gelation kinetics and drug release profiles. Int. J. Pharm. 2011, 407, 53–62.
  2. Raghuram R.K., Srinivas M., Srinivas R.: Once-Daily Sustained-Release Matrix Tablets of Nicorandil: Formulation and in vitro evaluation. AAPS Pharm. Sci. Tech. 2003, 4, 61.
  3. Krajacic A., Tucker I.G.: Matrix formation in sustained release tablets: possible mechanism of dose dumping. Int. J. Pharm. 2003, 251, 67–78.
  4. Zhu Y., Shah N., McGinity J.: Controled release of a poorlywater-soluble drug from hot melt extrudates containing acrylic polymers. Drug. Dev. Ind. Pharm. 2006, 32, 569–558.
  5. Azarmi S., Farid J., Nokhodchi A., Bahari-Saravi S.M., Valizadeh H.: Thermal treating as a tool for sustained release of indomethacin from Eudragit RS and RL matrices. Int. J. Pharm. 2002, 246, 171–177.
  6. Azarmi S., Ghaffari F., Löbenberg R., Nokhodchi A.: Mechanistic evaluation of the effect of thermal-treating on Eudragit RS matrices. Farmaco 2005, 60, 925–93.
  7. Siepmann F., Eckart K., Maschke A., Kolter K., Siepmann J.: Modeling drug release from PVAc/PVP matrix tablets. J. Control. Release 2010, 141, 216–222.
  8. Viridén A., Larsson A., Schagerlöf H., Wittgren B.: Model drug release from matrix tablets composed of HPMC with different substituent heterogeneity. Int. J. Pharm. 2010, 386, 52–60.
  9. Sahoo J., Murthy P.N., Biswal S., Sahoo S.K., Mahapatra A.K.: Comparative study of propranolol hydrochloride release from matrix tablets with Kollidon SR or Hydroxy Propyl Methyl Cellulose. AAPS Pharm. Sci. Tech. 2008, 9, 2.
  10. Hamdy A., Ossama Y.A., Hesham S.: Formulation of controlled-release baclofen matrix tablets II: influence of some hydrophobic excipients on the release rate and in vitro evaluation. AAPS Pharm. Sci. Tech. 2008, 9, 2.
  11. Tabandeh H., Alireza Mortazavi S., Bassir Guilani T.: Preparation of sustained-release matrix tablets of aspirin with Ethylcellulose, Eudragit RS 100 and Eudragit S100 and studying the release profiles and their sensitivity to tablet hardness. Ind. J. Pharm. Res. 2003, 201–206.
  12. Lee K.R., Kim E.J., Seo S.W., Choi H.K.: Effect of poloxamer on the dissolution of felodipine and preparation of controlled release matrix tablets containing felodipine. Arch. Pharm. Res. 2008, 31, 8, 1023–1028.
  13. Park S.H., Chun M.K., Choi H.K.: Preparation of an extended-release matrix tablet using chitosan/Carbopol interpolymer complex. Int. J. Pharm. 2008, 347, 39–44.
  14. Szente V., Baska F., Zelkó R., Süvegh K.: Prediction of the drug release stability of different polymeric matrix tablets containing metronidazole. J. Pharm. Biomed. Anal. 2011, 54, 730–734.
  15. Mandal S., Basu S.K., Sa B.: Sustained release of a water-soluble drug from alginate matrix tablets prepared by wet granulation method. AAPS. Pharm. Sci. Tech. 2009, 10, 4.
  16. Pavli M., Vrecer F., Baumgartner S.: Matrix tablets based on carrageenans with dual controlled release of doxazosin mesylate. Int. J. Pharm. 2010, 400, 15–23.
  17. Kumar S., Satish Kumar Gupta S.: Natural polymers, gums and mucilages as excipients in drug delivery. Polim. Med. 2012, 42, 3–4, 191–197.
  18. Katzhendler I., Mader K., Friedman M.: Structure and hydration properties of hydroxypropylmethylcellulose matrices containing naproxen and naproxen sodium. Int. J. Pharm. 2000, 200, 161–179.
  19. Siepmann J., Peppas N.A.: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157.
  20. Tajarobi F., Abrahmsen-Alami S., Hansen M., Larsson A.: The impact of dose and solubility of additives on the release from HPMC matrix tablets-identifying critical conditions. Pharm. Res. 2009, 26, 1496–1503.
  21. Siepmann J., Siepmann F.: Mathematical modeling of drug delivery. Int. J. Pharm. 2008, 364, 328–343.
  22. Grund J., Körber M., Bodmeier R.: Predictability of drug release from water-insoluble polymeric matrix tablets. Eur. J. Pharm. Biopharm. 2013, 85, 650–655.
  23. Korsmeyer R.W., Gurny R., Doelker E., Buri P., Peppas N.A.: Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25.
  24. Costa P., Sousa Lobo J.M.: Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123.
  25. Kulinowski P., Młynarczyk A., Dorożyński P., Jasiński K., Gruwel M.L.H., Tomanek B., Węglarz W.P.: Magnetic resonance microscopy for assessment of morphological changes in hydrating Hydroxypropylmethyl Cellulose matrix tablets in situ. Pharm. Res. 2012, 29, 3420–3433.
  26. Huanbutta K., Cheewatanakornkool K., Terada K., Nunthanid J., Sriamornsak P.: Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets. Carbohydrate Polymers 2013, 97, 26–33.
  27. Viridén A., Abrahmsén-Alami S., Wittgren B., Larsson A.: Release of theophylline and carbamazepine from matrix tablets – Consequences of HPMC chemical heterogeneity Eur. J. Pharm. Biopharm. 2011, 78, 470–479.
  28. Avachat A., Kotwal V.: Design and Evaluation of Matrix-Based Controlled release tablets of diclofenac sodium and chondroitin sulphate. AAPS Pharm. Sci. Tech. 2007, 8(4), 88.
  29. Asare-Addo K., Levina M., Rajabi-Siahboomi A.R., Nokodhchi A.: Effect of ionic strength and pH of dissolution media on theophylline release from hypromellose matrix tablets-Apparatus USP III, simulated fasted and fed conditions. Carbohydr. Pol. 2011, 86, 85–93.
  30. Asare-Addo K., Conway B.R., Larhrib H., Levina M., Rajabi-Siahboomi A.R., Tetteh J., Boateng J., Nokhodchi A.: The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices. Colloids and Surf. B: Biointerfaces. 2013, 111, 384–391.
  31. The Dow Chemical Company: Using METHOCEL Cellulose Ethers for Controlled Release of Drugs in Hydrophilic Matrix Systems. 2000, 10–25. www.colorcon.com/www.methocel.com
  32. Levina M., Rajabi-Siahboomi A.R.: The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J. Pharm. Sci. 2004, 93, 2746–2754.
  33. Nokhodchi A., Raja S., Patel P., Asare-Addo K.: The role of oral controlled release matrix tablets in drug delivery systems. BioImpacts 2012, 2(4), 175–187.
  34. Grund J., Koerber M., Walther M., Bodmeier R.: The effect of polymer properties on direct compression and drug release from water-insoluble controlled release matrix tablets. Int. J. Pharm. 2014, 469, 94–101.
  35. Salsa T., Veiga F., Teixeira-Dias J.J.C., Pina M.E.: Effect of polymer hydration on the kinetic release of drugs: a study of ibuprofen and ketoprofen in HPMC matrices, Drug Dev. Ind. Pharm. 2003, 29(3) 289–297.
  36. BASF Nutrition and Health – Pharma Ingredients and Services. Kollidon SR. Technical Information. 2011, 1–10.
  37. Sakr W., Alanazi F., Sakr A.: Effect of Kollidon SR on the release of Albuterol Sulphate from matrix tablets. Saudi Pharm. J. 2011, 19, 19–27.
  38. Ariasa J.L., Gómez-Galloa A., Delgadob Á.V., Gallardoa V.: Study of the stability of Kollidon SR suspensions for pharmaceutical applications. Colloids Surf. A Physicochem. Eng. Aspects 2009, 338, 107–113.
  39. Ariasa J.L., Gómez-Galloa A., Delgadob Á.V., Ruiza A.: Kollidon SR colloidal particles as vehicles for oral morphine delivery in pain treatment. Colloids Surf. B Biointerfaces 2009, 70(2), 207–212.
  40. Reza M.S., Quadir M.A., Haider S.S.: Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. J. Pharm. Pharm. Sci. 2003, 6(2), 282–291.
  41. Evonik Industries A.G.: Eudragit Technical Information. 2012, 1–7.
  42. Hamdy A., Ossama Y.A., Hesham S.: Formulation of controlled-release baclofen matrix tablets II: influence of some hydrophobic excipients on the release rate and in vitro evaluation. AAPS Pharm. Sci. Tech. 2008, 9, 2.
  43. Mehta K.A., Kislalioglu M.S., Phuapradit W., Malick A.W., Shah N.H.: Release performance of a poorly soluble drug from a novel, Eudragit-based multi-unit erosion matrix. Int. J. Pharm. 2001, 1, 213(1–2), 7–12.
  44. Tabandeh H., Alireza Mortazavi S., Bassir Guilani T.: Preparation of sustained-release matrix tablets of aspirin with Ethylcellulose, Eudragit RS 100 and Eudragit S100 and studying the release profiles and their sensitivity to tablet hardness. Ind. J. Pharm. Res. 2003, 201–206.
  45. Kibbe A.H.: Handbook of pharmaceutical excipients. American Pharmaceutical Association. 2000, 665.
  46. Rowe R.C., Sheskey P.J., Quinn M.E.: Handbook of pharmaceutical excipients. Pharmaceutical Press and American Pharmacists Association. 2009, 110.
  47. Lubrizol advanced materials. Carbopol polymers for controlled release matrix tablets. Lubrizol. 2008.
  48. Jana S., Sena K.K., Basub S.K.: In vitro aceclofenac release from IPN matrix tablets composed of chitosan-tamarind seed polysaccharide. Int. J. Biol. Macromol. 2014, 65, 241–245.
  49. Cho S.M., Choi H.K.: Preparation of mucoadhesive chitosan–poly(acrylic acid) microspheres by interpolymer complexation and solvent evaporation method II. Arch. Pharm. Res. 2005, 28, 612–618.
  50. Kean T., Roth S., Thanou M.: Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency. J. Controll. Release. 2005, 103(3), 643–653.
  51. Rowe R.C., Sheskey P.J., Quinn M.E.: Handbook of pharmaceutical excipients. Pharmaceutical Press and American Pharmacists Association. 2009, 622.
  52. Picker K.M.: Matrix tablets of carrageenans. I. A compaction study. Drug Dev. Ind. Pharm. 1999, 25(3), 329–337.
  53. Wang D., Yu X., Gongyuan W.: Pullulan production and physiological characteristics of Aureobasidium pullulans under acid stress. Appl. Microbiol. Biotechnol. 2013, 97, 8069–8077.
  54. Mahendar R., Ramakrisha K.: Formulation and evaluation of floating matrix tablets of stavudine using pullulan gum. Int. J. Chem. Pharm. Sci. 2012, 3.
  55. Jaswanth Kumar B.S., Sinha V.R.: Natural and synthetic hydrophilic matrices for development of pregabalin extended release tablets. Int. J. Pharm. Pharm. Sci. 2013, 5, 3.
  56. Williams III R.O., Reynolds T.D., Cabelka T.D., Sykora M.A., Mahaguna V.: Investigation of excipient type and level on drug release from controlled release tablets containing HPMC. Pharm. Dev. Tech. 2002, 7(2), 181–193.
  57. Badshah A., Subhan F., Khalid Rauf K.: Controlled release matrix tablets of olanzapine: Influence of polymers on the In Vitro release and bioavailability. 2010, 11, 3.
  58. Deng H., Vass S., Tiwari S., Farrell T., Faham A., Cabelka T., Rajabi-Siahboomi A.: Application of Quality by Design (QbD) principles to the formulation of extended release propranolol hydrochloride hydrophilic matrix tablets. 2010, AAPS annual meeting and exposition, New Orleans.
  59. Khaleda S.A., Burleya J.C., Alexandera M.R., Robertsa C.J.: Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int. J. Pharm. 2014, 461, 105–111.