Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2013, vol. 43, nr 4, October-December, p. 302–312

Publication type: review article

Language: Polish

Perspektywy wykorzystania polimerowych rusztowań w rekonstrukcji oraz stymulacji regeneracji pourazowych uszkodzeń mózgu

The Outlook for the Use of Polymeric Scaffolds in the Reconstruction and the Regeneration Stimulation of Traumatic Brain Injuries

Anna Lis1,B,C,D, Dariusz Szarek2,E,F, Dariusz Szarek3,E,F, Jadwiga Laska1,E,F

1 Katedra Biomateriałów, Akademia Górniczo-Hutnicza w Krakowie, Kraków, Polska

2 Katedra Neurochirurgii, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Wrocław, Polska

3 Oddział Neurochirurgii, Szpital im. T. Marciniaka, Centrum Medycyny Ratunkowej we Wrocławiu, Wrocław, Polska

Streszczenie

Schorzenia neurologiczne, takie jak udary krwotoczne lub niedokrwienne mózgu czy urazy powodują przeważnie przerwanie ciągłości struktur mózgu i w związku z tym utratę wielu funkcji neurologicznych. Aktualne kliniczne strategie leczenia skutków uszkodzeń tkanki nerwowej mózgu są ograniczone. Można wprawdzie ograniczyć proces degeneracji lub łagodzić objawy, ale nie zmienia to faktu, że wiele poszkodowanych osób nigdy nie powraca do stanu sprzed zachorowania oraz wymaga długotrwałej rehabilitacji. Strategie regeneracyjne oparte na terapiach komórkowych oraz rusztowaniach polimerowych są nadzieją dla wielu pacjentów. Rusztowania polimerowe mogą wzmocnić prawdopodobieństwo sukcesu terapii komórkowych poprzez stworzenie sztucznej macierzy pozakomórkowej, która ułatwi przeżycie, proliferację, różnicowanie oraz spójność przeszczepionych i endogennych komórek. Niniejszy artykuł prezentuje wyselekcjonowane formy polimerowych rusztowań, które zostały zbadane pod kątem możliwości wspomagania procesów naprawczych w tkance nerwowej mózgu oraz ich potencjalne zastosowania kliniczne w leczeniu ubytków pourazowych oraz chorób neurodegeneracyjnych.

Abstract

Neurological disorders and injuries such as ischemic or haemorrhagic strokes or traumatic brain injuries result in the damage of cerebral parenchyma structures and in consequence, the loss of neurological functions. The current clinical strategies for the treatment of the brain nervous tissue disruptions are limited. The aforementioned methods can reduce the tissue degeneration or mitigate the subsequent symptoms, but do not alter the fact that many of the affected people are incapable of returning to the condition before the accident and they need long-lasting rehabilitation. Regenerative strategies based on the cell therapies and the use of polymeric scaffolds seem to be very promising for many patients. Polymer scaffolds may provide an opportunity to enhance the probability of cell therapy success by creating an artificial extracellular matrix which further facilitates cell survival, proliferation, differentiation, and promotes integrity of transplanted as well as endogenous cells. This paper presents selected forms of the polymeric scaffolds, which have been tested for the restoration processes within brain tissue and their potential clinical applications of scaffolds in both the treatment of posttraumatic neuronal loss and the neurodegenerative disorders.

Słowa kluczowe

polimery, ośrodkowy układ nerwowy, mózg, tkanka nerwowa, regeneracja

Key words

polymers, central nervous system, brain, nerve tissue, regeneration

References (40)

  1. Delcroix G.J.-R., Schiller P.C., Benoit J.-P., Montero-Menei C.N.: Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 2010, 31(8), 2105–2120.
  2. Nisbet D.R., Rodda A.E., Horne M.K., Forysythe J.S., Finkelstein D.I.: Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 2009, 30, 4573–4580.
  3. Baigeura S., Del Gaudio C., Lucatelli E., Kuveda E., Boieri M., Mazzanti B., Bianco A., Macchiarini P.: Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 2014, 35, 1205–1214.
  4. Rao S.S., Nelson T.M., Xue R., DeJesus J.K., Viapiano M.S., Lannuti J.J., Sarkar A., Winter J.O.: Mimicking white matter tract topography using core-shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials 2013, 34, 5181–5190.
  5. Zimmermann D.R., Dours-Zimmermann M.T.: Extracellular matrix of the central nervous system: from neglect to challenge. Histochem. Cell Biol. 2008, 130, 635–653.
  6. Wang H.B., Mullins M.E., Cregg J.M., Hurtado A., Oudega M., Trombley M.T., Gilbert R.J.: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J. Neural Engineer. 2009, 6(1), 1–15.
  7. Gupta D., Venugopal J., Prabhakaran M., Dev V., Low S., Choon A.: Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomaterial. 2009, 5(7), 2560–2569.
  8. Ghasemi-Mobarakeh L., Prabhakaran M., Morshed M., Nasr-Esfahani M., Ramakrishna S.: Electrospun poly(epsiloncaprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008, 29(34), 4532–4539.
  9. Johnson J., Nowicki M., Lee C., Chiocca E., Viapiano M., Lawler S.: Quantitative Analysis of Complex Glioma Cell Migration on Electrospun Polycaprolactone Using Time-Lapse Microscopy. Tiss. Engineer. Part C Meth. 2009, 15(4), 531–540.
  10. Low W.Ch., Rujitanaroj P.-O., Lee D.-K., Messersmith P.B., Stanton L.W., Goh E., Chew S.Y.: Nanofibrous scaffold-mediated REST knockdown to enhance neuronal differenation of stem cells. Biomaterials 2013, 34, 3581–3590.
  11. Horne M.K, Nisbet D.R., J.S. Forsythe J.S., Parish C.L.: Three Dimensional Nanofibrous Scaffolds Incorporating Immobilized BDNF Promote Proliferation and Differentiation of Cortical Neural Stem Cells. Stem Cells Develop. 2010, 19(6), 843–852.
  12. Tseng Y.-Y., Hao Y.-Ch., Liao J.-Y., Chen W.-A., Liu S.-J.: Biodegradable Drug-Eluting Poly(lactic-glycol acid) Nanofibers for the Sustainable Delivery of Vancomycin to Brain Tissue: In Vitro and In Vivo Studies. ACS Chem. Neurosci. 2013, 4(9), 1314–1321.
  13. Lee J., Bashur C., Goldstein A., Schmidt C.: Polypyrrole-Coated Electrospun PLGA Nanofibers for Neural Tissue Applications. Biomaterials 2009, 30(26), 4325–4335.
  14. Aurand E.R., Lampe K.J., Bjugstad K.B.: Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci. Res. 2012, 72, 199–213.
  15. Woerly S., Petrov P., Sykova E., Roitbak T., Simonova Z., Harvey A.R.: Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies. Tiss. Engineer. 1999, 5, 467–488.
  16. Leach J., Brown X., Jacot J., DiMilla P., Wong J.: Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Engineer. 2007, 4(2), 26–34.
  17. Stabenfeldt S., Garcia A., LaPlaca M.: Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J. Biomed. Materials Res. Part A 2006, 77(4), 718–725.
  18. Crompton K.E., Goud J.D., Bellamkonda R.V., Gengenbach T.R., Finkelstein D.I., Horne M.K., Forsythe J.S.: Polylysinefunctionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 2007, 28, 441–449.
  19. Banerjee A., Arha M., Choudhary S., Ashton R.S., Bhatia S.R., Schaffer D.V., Kane R.S.: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009, 30(27), 4695–4659.
  20. Wang T.W., Spector M.: Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomaterial. 2009, 5(7), 2371–2384.
  21. Pan L., Ren Y., Cui F., Xu Q.: Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J. Neurosci. Res. 2009, 87(14), 3207–3220.
  22. Namba R., Cole A., Bjugstad K., Mahoney M.: Development of porous PEG hydrogels that enable efficient, uniform cellseeding and permit early neural process extension. Acta Biomaterial. 2009, 5, 1884–1897.
  23. Mahoney M., Krewson C., Miller J., Saltzman W.: Impact of cell type and density on nerve growth factor distribution and bioactivity in 3-dimensional collagen gel cultures. Tiss. Engineer. 2006, 12(7), 1915–1927.
  24. Bhang S.H., Lee T.J., Lim J.M., Han A.M., Choi C.Y., Kwon Y.H., Kim B.S.: The effect of the controlled release of nerve growth factor from collagen gel on the efficiency of neural cell culture. Biomaterials 2009, 30(1), 126–132.
  25. Lu D., Mahmood A., Qu C., Hong X., Kaplan D., Chopp M.: Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurg. 2007, 61(3), 596–602.
  26. Xu T., Molnar P., Gregory C., Das M., Boland T., Hickman J.: Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. Biomaterials 2009, 30(26), 4377–4383.
  27. Wei Y.T., Sun X.D., Xia X., Cui F.Z., He Y., B. Liu B.F.: Hyaluronic acid hydrogel modified with Nogo-66 receptor antibody and poly(l-lysine) enhancement of adherence and survival of primary hippocampal neurons. J. Bioact. Compatible Polym. 2009, 24, 205–219.
  28. Cui F.Z., W. Tian W.M., Hou S.P., Xu Q.Y., Lee I.S.: Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J. Material Sci.: Materials Med. 2006, 17(12), 1393–1401.
  29. Zhang T., Yan Y., Wang X., Xiong Z., Lin F., Wu R.: Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain. Injury J. Bioactive Compatible Polym. 2007, 22, 19–29.
  30. Tate M.C., Shear D.A., Hoffman S.W., Stein D.G., LaPlaca M.C.: Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials 2001, 22(10), 1113–1123.
  31. Cao Z., Gilbert R.J., He W.: Simple agarose-chitosan gel composite for enhanced neuronal growth in three dimensions. Biomacromolecul. 2009, 10(10), 2954–2959.
  32. Yu L., Kazazian K., Shoichet M.: Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. J. Biom. Mater. Res. Part A 2007, 82(1), 243–255.
  33. Irons H., Cullen D., Shapiro N., Lambert N., Lee R., LaPlaca M.: Three-dimensional neural constructs: a novel platform for neurophysiological investigation. J. Neural Engineer. 2008, 5(3), 333–341.
  34. Dewitt D.D., Kaszuba S.N., Thompson D.M., Stegemann J.P.: Collagen I-matrigel scaffolds for enhanced Schwann cell survival and control of three-dimensional cell morphology. Tiss. Engineer. Part A 2009, 15(10), 2785–2793.
  35. Thonhoff J.R., Lou D.I., Jordan P.M., Zhao X., Wu P.: Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res. 2008, 1187, 42–51.
  36. Lesný P., De Croos J., Pradny M., Vacik J., Michalek J., Woerly S., Syková E.: Polymer hydrogels usable for nervous tissue repair. J. Chem. Neuroanat. 2002, 23(4), 243–247.
  37. Guiseppi-Elie A.: Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010, 31(10), 2701–2716.
  38. Liu Y., Li J., Shao K., Huang R., Ye L., Lou J., Jiang C.: A leptin derived 3-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 2010, 31, 5246–5227.
  39. Hynes S., Rauch M., Bertram J., Lavik E.: A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J. Biomed. Material Res. Part A 2009, 89(2), 499–509.
  40. Freudenberg U., Hermann A., Welzel P., Stirl K., Schwarz S., Grimmer M.: A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 2009, 30, 5049–5060.