Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2011, vol. 41, nr 1, January-March, p. 3–15

Publication type: review article

Language: Polish

Poszukiwania polimerów ze śladem molekularnym do diagnostyki medycznej i analizy klinicznej

Investigations of molecularly imprinted polymers for medical diagnostics and clinical analysis

Piotr Luliński1,, Dorota Maciejewska1,, Dorota Klejn1,

1 Katedra i Zakład Chemii Organicznej, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny

Streszczenie

W pracy omówiono doniesienia literaturowe z ostatnich lat, dotyczące badań polimerów ze śladem molekularnym do celów diagnostyki medycznej i analizy klinicznej. Omawiana grupa nowych i selektywnych materiałów polimerowych może mieć potencjalne zastosowanie w monitorowaniu przebiegu cukrzycy i chorób nowotworowych, w diagnostyce chorób nerek, serca i miażdżycy oraz w analizie krwi.

Abstract

The review focuses on progress of molecularly imprinted polymers for medical diagnostics and clinical analysis. This class of new and selective polymeric materials could find future applications in monitoring of diabetes and tumors, in diagnostics of kidney and heart diseases, arteriosclerosis or in blood analysis.

Słowa kluczowe

polimery ze śladem molekularnym, diagnostyka medyczna, analiza kliniczna

Key words

molecularly imprinted polymers, medical diagnostics, clinical analysis

References (36)

  1. Luliński P.: Polimery ze śladem molekularnym w naukach farmaceutycznych. Cz. I. Podstawy procesu tworzenia śladu molekularnego. Zastosowanie w syntezie leków i technologii postaci leku. Polimery (2010), 11–12, 799–805.
  2. Luliński P.: Polimery ze śladem molekularnym w naukach farmaceutycznych. Cz. II. Zastosowanie w analizie farmaceutycznej. Polimery (2011), 1, 3–10.
  3. Piletsky S. A., Turner N. W., Laitenberger P.: Molecularly imprinted polymers in clinical diagnostics – Future potential and existing problems. Medical Engineering and Physics (2006), 28, 971–977.
  4. Lapolla A., Traldi P., Fedele D.: Importance of measuring products of non-enzymatic glycation of proteins. Clinical Biochemistry (2005), 38, 103–115.
  5. Sacks D. B.: Correlation between hemoglobin A1c (HbA1c) and average blood glucose: can HbA1c be reported as estimated blood glucose concentration? Journal of Diabetes Science and Technology (2007), 1, 801–803.
  6. Nathan D. M., Balkau B., Bonora E., BorchJohnsen K., Buse J. B., Colaguiri S., Davidson M. B., DeFronzo R., Genuth S., Holman R. R., J. L., Kirkman S., Knowler W. C., Schatz D., Shaw J., Sobngwi E., Steffes M., Vaccaro O., Wareham N., Zinman B., Kahn R.: International expert committee report on the role of the A1c assay in the diagnosis of diabetes. Diabetes Care (2009), 32, 1327–1334.
  7. Yamazaki T., Ohta S., Yanai Y., Sode K.: Molecular imprinting catalyst based artificial enzyme sensor for fructosylamines. Analytical Letters (2003), 36, 75–89.
  8. Sode K., Ohta S., Yanai Y., Yamazaki T.: Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor. Biosensors and Bioelectronics (2003), 18, 1485–1490.
  9. Rajkumar R., Warsinke A., Mohwald H., Scheller F. W., Katterle M.: Development of fructosyl valine binding polymers by covalent imprinting. Biosensors and Bioelectronics (2007), 22, 3318–3325.
  10. Bullinger D., Neubauer H., Fehm T., Laufer S., Gleiter C. H., Kammerer B.: Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling. BMC Biochemistry (2007), 8: 25.
  11. Seidel A., Brunner S., Seidel P., Fritz G. I., Herbarth O.: Modifies nucleosides: an accurate tumour maker for clinical diagnosis of cancer, early detection and therapy control. British Journal of Cancer (2006), 94, 1726–1733.
  12. Jegourel D., Delepee R., Breton F., Rolland A., Vidal R., Agrofoglio L. A.: Molecularly imprinted polymer of 5-methyluridine for solid-phase extraction of pyrimidine nucleoside cancer markers in urine. Bioorganic and Medicinal Chemistry (2008), 16, 8932–8939.
  13. Azuma K., Tanaka M., Uekita T., Inoue S., Yokota J., Ouchi Y., Sakai R.: Tyrosine phosphorylation of paxillin affects the metastatic potential of human osteosarcoma. Oncogene (2005), 24, 4754–4764.
  14. Emgenbroich M., Borrelli C., Shinde S., Lazraq I., Vilela F., Hall A. J., Oxelbark J., De Lorenzi E., Courtois J., Simanova A., Verhage J., Irgum K., Karim K., Sellergren B.: A phosphotyrosine – imprinted polymer receptor for the recognition of tyrosine phosphorylated peptides. Chemistry A European Journal (2008), 14, 9516–9529.
  15. Robinson-Bennett B. L., DeFord J., Diaz-Arrastia C., Levine L., Wang H.-Q., Hannigan E. V., Papaconstantinou J.: Implications of tyrosine phosphoproteomics in cervical carcinogenesis. Journal of Carcinogenesis (2008), 7: 2.
  16. Bossi A., Bonini F., Turner A. P. F., Piletsky S. A.: Molecularly imprinted polymers for the recognition of proteins: the state of art. Biosensors and Bioelectronics (2007), 22, 1131–1137.
  17. Passos V. M. A., Barreto S. M., Lima-Costa M. F. F.: Detection of renal dysfunction based on serum creatinine levels in a Brazilian community. The Bambui health and ageing study. Brazilian Journal of Medical and Biological Research (2003), 36, 393–401.
  18. Harlan R., Clarke W., Di Bussolo J. M., Kozak M., Straseski J., Li Meany D.: An automated turbulent flow liquid chromatography – isotope dilution mass spectrometry (LC-IDMS) method for quantitation of serum creatinine. Clinica Chimica Acta (2010), 411, 1728–1734.
  19. Pandey P. C., Mishra A. P.: Novel potentiometric sensing of creatinine. Sensors and Actuators B (2004), 99, 230–235.
  20. Hsieh R.-Y., Tsai H.-A., Syu M.-J. Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatininie in serum. Biomaterials (2006), 27, 2083–1089.
  21. Laurence A. S.: Serum myoglobin and creatine kinase following surgery. British Journal of Anaesthesia (2000), 84, 763–766.
  22. Yamamoto M., Komiyama N., Koizumi T., Nameki M., Yamamoto Y., Toyoda T., Okuno T., Tateno K., Sano K., Himi T., Kuriyama N., Namikawa S., Yokoyama M., Komuro I.: Usefulness of rapid quantitive measurement of myoglobin and troponin T in early diagnosis of acute myocardial infarction. Circulation Journal (2004), 68, 639–644.
  23. Lin H.-Y., Rick J., Chou T.-C.: Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer – formed using a microcontact imprinting method. Biosensors and Bioelectronics (2007), 22, 3293–3301.
  24. Goldstein J. L., Brown M. S.: The LDL receptor. Arteriosclerosis, Thrombosis, and Vascular Biology (2009), 29, 431–438.
  25. Noda H., Iso H., Irie F., Sairenchi T., Ohtaka E., Ohta H.: Association between nonhighdensity lipoprotein cholesterol concentrations and mortality from coronary heart disease among Japanese men and women: the Ibaraki prefecture health study. Journal of Artherosclerosis and Thrombosis (2010), 17, 30–36.
  26. Shi Y., Zhang J.-H., Shi D., Jiang M., Zhu Y.-X., Mei S.-R., Zhou Y.-K., Dai K., Lu B.: Selective solid-phase extraction of cholesterol using molecularly imprinted polymers and its application in different biological samples. Journal of Pharmaceutical and Biomedical Analysis (2006), 42, 549–555.
  27. Higgins J. A.: The transverse distribution of phospholipids in the membranes of Golgi subfractions of rat hepatocytes. Biochemistry Journal (1984), 219, 261–272.
  28. Yamamoto A.: Phospholipids and their fatty acid composition in hyperlipemia. Japanese Journal of Medicine (1975), 14, 104–106.
  29. Pegoraro C., Silvestri D., Ciardelli G., Cristallini C., Barbani N.: Molecularly imprinted poly(ethylene-co-vinyl alcohol) membranes for the specific recognition of phospholipids. Biosensors and Bioelectronics (2008), 24, 748–755.
  30. Van Straten A. H. M., Hamad M. A. S., van Zundert A. J., Martens E. J., Schonberger J. P. A. M., de Wolf A. M.: Preoperative hemoglobin level as a predictor of survival after coronary artery bypass grafting. Circulation (2009), 120, 118–125.
  31. Xing Y., Yan H., Dang S., Zhuoma B., Zhou X., Wang D.: Hemoglobin levels and anemia evaluation during pregnancy in the highlands of Tibet: a hospital based study. BMC Public Health (2009), 9: 336.
  32. Guo T. Y., Xia Y. Q., Hao G. J., Song M. D., Zhang B. H.: Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials (2004), 25, 5905–5912.
  33. Bird G. W. G.: Relationship of the blood subgroups A1, A2 and A1B, A2B to haemagglutinins present in the seeds of Dolichos biflorus. Nature (1952), 170, 674.
  34. Economidou J., Hughes-Jones N. C., Gardner B.: Quantitive measurements concerning A and B antigens sites. Vox Sanguinis (1967), 12, 321–328.
  35. Furukawa K., Clausen H., Hakomori S.-I., Sakamoto J., Look K., Lundblad A., Mattes M. J., Lloyd K. O.: Analysis of the specificity of five murine anti-blood group A monoclonal antibodies, including one that identifies type 3 and type 4 determinants. Biochemistry (1985), 24, 7820–7826.
  36. Seifer A., Lieberzeit P., Jungbauer C., Dickert F. L.: Synthetic receptors for selectively detecting erythrocyte ABO subgroups. Analytica Chimica Acta (2009), 651, 215–219.