Polymers in Medicine
2010, vol. 40, nr 2, April-June, p. 3–9
Publication type: review article
Language: Polish
Zastosowanie syntetycznych polimerów ulegających biodegradacji w rekonstrukcjach nerwów obwodowych
The employment of synthetic biodegradable polymers in reconstructions of the peripheral nerves
1 Katedra Chirurgii Urazowej, Klinika Chirurgii Urazowej i Chirurgii Ręki Akademii Medycznej we Wrocławiu
2 Zakład Medycyny Sportu Akademii Wychowania Fizycznego we Wrocławiu
Streszczenie
W pracy przedstawiono możliwości zastosowania syntetycznych polimerów ulegających biodegradacji do produkcji tub, używanych w rekonstrukcjach nerwów obwodowych w badaniach eksperymentalnych i praktyce klinicznej. Najczęściej wykorzystywane do tego celu są poliestry alifatyczne, a znacznie rzadziej polifosfoestry i poliuretany. W pracy zaprezentowano doświadczenia różnych autorów w zastosowaniu poszczególnych polimerów w warunkach eksperymentalnych, oraz omówiono uzyskane przez nich wyniki. Ponadto przedstawiono przypadki zastosowań klinicznych tub z PGA – polyglycolic acid i PLCL – poly(DL-lactide-ε- caprolactone), które odpowiednio jako GEM Neurotube® i Neurolac® zostały dopuszczone do masowej produkcji. Zaprezentowano również podstawowe zasady techniki operacyjnej w czasie wykonywania rekonstrukcji z użyciem tub nerwowych, oraz omówiono przyczyny ewentualnych niepowodzeń leczenia mikrochirurgicznego. Wskazano ponadto na istniejące nadal ograniczenia w wykorzystaniu sztucznych tub nerwowych, oraz przedstawiono kierunki dalszego rozwoju badań. Możliwość ustalania wagi molekularnej polimerów tworzących rusztowanie tuby oraz porowatości i przepuszczalności jej ściany, stwarza coraz większe szanse wyprodukowania optymalnej do zastosowań klinicznych sztucznej tuby nerwowej.
Abstract
In this study we presented the possibility of using a synthetic biodegradable polymers to production a conduits employ in reconstructions of the peripheral nerves in experimental studies and medical practice. The aliphatic polyesters are most common used to this purpose. The poly(phosphoesters) and polyurethanes are used rather rare. In study we presented experiences of many authors in employment of the following polymers in experimental conditions. The obtained results were also described. The cases of clinical using of artificial nerve conduits from PGA – polyglycolic acid and PLCL – poly(DLlactideε-caprolactone) were also described. Only PGA and PLCL marked as GEM Neurotube ® and Neurolac® were approved to commercial production. The basic aspects of operating technique during reconstructions with artificial nerve conduits and causes of potential failure in mi crosurgical reconstructions were described. Still existing limitations in employment of artificial nerve tubes were emphasized and the directions of future progress in studies were presented. The possibility of establish of molecular weight of polymers building a tube scaffold and porosity and degradability of the wall create a chance to production an optimal in clinical applications artificial nerve tube.
Słowa kluczowe
polimery syntetyczne, materiały ulegające biodegradacji, rekonstrukcja nerwu, sztuczna tuba nerwowa
Key words
synthetic polymers, biodegradable materials, nerve reconstruction, artificial nerve conduit
References (46)
- Gosk J., Rutowski R., Rabczyński J.: The lower extremity nerve injuries – own experience in surgical treatment. Folia Neuropathol. (2005), 43, 148–152.
- Gosk J., Rutowski R.: Otwarte uszkodzenia nerwów kończyn dolnych – zasady postępowania diagnostyczno-terapeutycznego. Ortop. Traumatol. Rehab. (2005), 7, 651–655.
- Nichols C. M., Brenner M. J., Fox I. K., et al.: Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp. Neurol. (2004), 190, 347–355.
- Ichichara S., Inada Y., Nakamura T.: Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Int. J. Care Inj. (2008), 39S4, S29–S39.
- Johnson E. O., Soucacos P. N.: Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Int. J. Care Inj. (2008), 39S, S30–S36.
- Jiang X., Lim S. H., Mao H. Q., et al.: Current applications and future perspectives of artificial nerve conduits. Exp. Neurol. (2009), doi: 10.1016/j.expneurol.2009.09.009.
- Bryan D. J., Holway A. H., Wang K. K., et al.: Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration. Tissue Eng. (2000), 6, 129–138.
- Bini T. B., Gao S., Xu X., et al.: Peripheral nerve regeneration by microbraided poly (L-lactidecoglicolide) biodegradable polymer fibers. J. Biomed. Mater. Res. A. (2004), 68, 286–295.
- Evans G. R., Brandt K., Widmer M. S., et al.: In vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials (1999), 20, 1109–1115.
- Wang S., Wan A. C., Xu X., et al.: A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials (2001), 22, 1157–1169.
- Chew S.Y., Mi R., Hoke A., et al.: Aligned proteinpolymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv. Funct. Mater. (2007), 17, 1288–1296.
- Hoppen H. J., Leenslag J. W., Pennings A. J., et al.: Two-ply biodegradable nerve guide: basic aspects of design, construction and biological performance. Biomaterials (1990), 11, 286–290.
- Robinson P. H., Van Der Lei B., Hoppen H. J., et al.: Nerve regeneration through a two-ply biodegradable nerve guide in the rat and the influence of ACTH 4-9 nerve growth factor. Microsurgery (1991), 12, 412–419.
- Borkenhagen M., Stoll R. C., Neuenschwander P., et al.: In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials (1999), 19, 2155–2165.
- Waitayawinyu T., Parisi D. M., Miller B., et al.: A comparison of polyglycolic acid versus type l collagen bioarbsorbable nerve conduits in a rat model: an alternative to autografting. J. Hand Surg. (2007), 32A, 1521–1529.
- Dellon A. L., Mackinnon S. E.: An alternative to the classical nerve graft for the management of the short nerve gap. Plast. Reconstr. Surg. (1988), 82, 849–856.
- Mackinnon S. E., Dellon A. L.: Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast. Reconstr. Surg. (1990), 85, 419– 424.
- I nformacja o produkcie GEM Neurotube® firmy Synovis (St. Paul, MN, USA).
- Weber R. A., Breidenbach W. C., Brown R. E., et al.: A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast. Reconstr. Surg. (2000), 106, 1036–1045.
- Ducic I., Maloney C. T. Jr, Dollon A. L.: Reconstruction of the spinal accessory nerve with autograft or neurotube? Two case reports. J. Reconstr. Microsurg. (2005), 21, 29–33.
- Navissano M., Malan F., Carnino R., et al.: Neurotube for facial nerve repair. Microsurgery (2005), 25, 268–271.
- Hung V., Dellon A. L.: Reconstruction of a 4-cm human median nerve gap by including an autogenous nerve slice in a bioabsorbable nerve conduits: a case report. J. Hand Surg. (2008), 33A, 313–315.
- Moore A. M., Kusukurthi R., Magil C. K., et al.: Limitations of conduits in peripheral nerve repairs. Hand (2009), 4, 180–186.
- Inada Y., Morimoto S., Takakura Y., et al.: Regeneration of peripheral nerve gaps with a polyglycolic acid-collagen tube. Neurosurgery (2004), 55, 640–646.
- Inada Y., Morimoto S., Moroi K., et al.: Surgical relief of causalgia with an artificial nerve guide tube: successful surgical treatment of causalgia (Complex Regional Pain Syndrome Type II ) by in situ tissue engineering with a polyglycolic acid-collagen tube. Pain (2005), 117, 251– 258.
- Inada Y., Moroi K., Morimoto S., et al.: Effective surgical relief of complex regional pain syndrome (CRPS) using a PGA-collagen nerve guide tube, with successful weaning from spinal cord stimulation. Clin. J. Pain. (2007), 23, 829– 830.
- Matsumoto K., Ohnishi K., Kiyotani T., et al.: Peripheral nerve regeneration across 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. (2000), 868, 315–328.
- Toba T., Nakamura T., Lynn A. K., et al.: Evaluation of peripheral nerve regeneration across a 80-mm gap using a polyglycolic acid (PGA)- collagen nerve conduit filled with lamininsoaked collagen sponge in dogs. Int. J. Artif. Organs. (2002), 25, 230–237.
- I nformacja o produkcie Neurolac® firmy Polyganics BV (Groningen, The Netherlands).
- Den Dunnen W. F., Meek M. F., Robinson P. H., et al.: Peripheral nerve regeneration through P(DLLA-epilon-CL) nerve guides. J. Matter. Sci. Mater. Med. (1998), 9, 811–814.
- Meek M. F., Vand Der Werff J. F., Nicolai J. P. A., et al.: Biodegradable p(DLLA-epsilonCL) nerve guides versus autologous nerve grafts: electromyographic and video analysis. Muscle Nerve (2001), 24, 753–759.
- Den Dunnen W. F., Van Der Lei B., Schakenraad J. M., et al.: Poly(DL-lactide-epsiloncaprolactone) nerve guides perform better than autologous nerve grafts. Microsurgery (1996), 17, 348–357.
- Bertleff M. J. O. E., Meek M. F., Nicolai J. P. A.: A prospective clinical evaluation of biodegradable Neurolac nerve guides for sensory nerve repair in the hand. J. Hand Surg. (2005), 30A, 513–518.
- Lundborg G., Rosen B., Dahlin L., et al.: Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study. J. Hand Surg. (1997), 22A, 99–106.
- Merle M., Dellon A. L., Campbell J. N., et al.: Complications from silicon-polymer intubulation of nerves. Microsurgery (1995), 10, 130– 133.
- Braga-Silva J.: The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm. J. Hand Surg. (1999), 24B, 703–706.
- Donoghoe N., Rosson G.D., Dellon A.L.: Reconstruction of the human median nerve in the forearm with the NeurotubeTM. Microsurgery (2007), 27, 595–600.
- Wang S. G., Cai Q., Hou J. W., et al.: Acceleration effect of basic fibroblast growth factor on the regeneration of peripheral nerve through a 15-mm gap. J. Biomed. Mater. Res. A. (2003), 66, 522–531.
- Cheng B., Chen Z. R.: Fabricating autologous tissue to engineer artificial nerve. Microsurgery (2002), 22, 133–137.
- Rutkowski G. E., Miller C. A., Jeftinija S. et. al.: Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J. Neural. Eng. (2004), 1, 151–157.
- Evans G. E., Brandt K., Katz S. et al.: Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials (2002), 23, 841–848.
- Nie X., Zhang Y. J., Tian W. D. et al.: Improvement of peripheral nerve regeneration by a tissueengineered nerve filled with ectomesenchymal stem cells. Int. J. Oral. Maxillofac. Surg. (2007), 36, 32–38.
- Meek M. F., Diijkstra J. R., Den Dunnen W. F. et al.: Functional assessment of sciatic nerve reconstruction: biodegradable poly(DLLA-epsilonCL) nerve guides versus autologous nerve grafts. Microsurgery (1999), 19, 381–388.
- Vleggeert-Lankamp C. L. A. M., Ruiter G. C. W., WOLFS J. F. C. et al.: Pores in synthetic nerve conduits are beneficial to regeneration. J. Biomed. Mater. Res. A. (2007), 80, 965–982.
- Chang C. J., Hsu S. H.: The effect of high outflow permeability in asymmetric poly(DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials (2005), 27, 1035–1042.
- Oh S. H., Kim J. H., Song K. S. et al.: Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials (2008), 29, 1601–1609.


