Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2009, vol. 39, nr 4, October-December, p. 61–67

Publication type: original article

Language: Polish

Elektroforeza w octanie celulozy CAE w badaniach komercyjnych alginianowych opatrunków aktywnych

Electrophoresis on a cellulose acetate CAE in a study of commercial active alginate dressings

Anna Pielesz1,

1 Wydział Nauk o Materiałach i Środowisku Instytut Inżynierii Tekstyliów i Materiałów Polimerowych, Akademia Techniczno-Humanistyczna w Bielsku-Białej

Streszczenie

Hydrożele zbudowane są z trójwymiarowej sieci polimerów polisacharydowych, które magazynują znaczną ilość wody, zapewniają nawilżenie i nawodnienie suchej rany. Jedną z najważniejszych właściwości hydrożeli alginianowych jest zdolność do absorpcji, uwalniania i retencji związków chemicznych, w tym głównie wody. W pracy dokonano identyfikacji metodą elektroforezy w octanie celulozy CAE rozpuszczalnych w wodzie alginianów sodu, zawartych w opatrunkach aktywnych Medisorb A. Wykazano również obecność kwasów guluronowego (G) i manuronowego (M) w hydrolizatach wzorca kwasu alginowego AA i alginianowych opatrunkach aktywnych Medisorb A. Zaobserwowano metodą elektroforezy CAE i dokonano próby interpretacji proponowanych wcześniej w literaturze tzw. struktur „egg-box” („jajko w pudełku na jajka” lub „wytłoczka do jajek”). Stwierdzono, że metoda elektroforezy CAE powinna znaleźć szersze zastosowanie do badań biomateriałów na bazie alginianów.

Abstract

Hydrogels are cross-linked threedimensional macromolecular networks that contain a large fraction of water within their structure. One of the most important properties of alginate hydrogels, leading to their broad versatility, is their ability for controlled uptake, release and retention of molecules. This ability, in turn, is due to specific interactions of the macromolecular network with the diffusing or retained molecule, for example ions. In this study, water-soluble sodium alginates contained in active dressings Medisorb A were identified using electrophoresis on cellulose acetate CAE. The presence of guluronic acid (G) and mannuronic acid (M) residues in hydrolysates of alginic acid AA (used as reference substance) and active alginate dressings Medisorb A was also proved. “Eggbox” structures, earlier described in literature, were observed using the same technique and their interpretation was attempted. Electrophoresis on cellulose acetate was found to be a useful method for examining alginatebased biomaterials.

Słowa kluczowe

elektroforeza w octanie celulozy CAE, alginianowe opatrunki aktywne, kwas guluronowy (G) i kwas manuronowy (M)

Key words

electrophoresis on a cellulose acetate CAE, active alginate dressings, guluronic acid (G) and mannuronic acid (M)

References (24)

  1. Pereira L., Sousa A., Coelho H., Amolo A. M., Ribeiro-Claro P. J. A.: Use of FTIR, FT Raman and C – NMR spectroscopy for identification of some seaweed phycocolloids. Biomolecular Engineering (2003) 20, 223–228.
  2. Tonnesen H. H., Karlsen J.: Alginate in drug delivery system. Drug Development and Industrial Pharmacy (2002) 28 (6), 621 – 630.
  3. Holte O., Onsoyen E., Myrvold R., Karlsen J.: Sustained release of water – soluble drug from directly compressed alginate tablets. European Journal of Pharmaceutical Sciences (2003) 20, 403–407.
  4. Emmerichs N., J., Wingender H. C., Flemming C.: Interaction between alginates and manganese cations: identification of preferred cation binding sites. International Journal of Biological Macromolecules (2004) 34, 73–79.
  5. Nivens D. E., Ohman D. E., Williams J., Franklin M. J.: Role of Alginate and Its O Acetylation in Formation of Pseudomonas aeruginosa microcolonies and biofilms. Journal of Bacteriology (2001) (3), 183.
  6. Khalil Saif El Din.: Deposition and Structural Formation of 3D Alginate Tissue Scaffolds. thesis 2005.
  7. Sartori C., Dudley S. F., Ralph B., Gilding K.: Determination of the cation content of alginate thin films by FTIR. Spectroscopy. Polymer (1997) 38, 1, 43–51.
  8. Tu J., Balla S., Barr J., Miedema J., Li X., Jasti B.: Alginate microparticles prepared by spray – coagulation method: Preparation, drug loading and release characterization. International Journal of Pharmaceutics (2005) 303.
  9. Lattner D., Flemming H.C., Mayera Ch.: 13C-NMR study of the interaction of bacterial alginate with bivalent cations. International Journal of Biological Macromolecules (2003) 33, 81–88.
  10. Kikuchi A., Kawabuchi M., Sugihara M., Sakurai Y., Okano T.: Pulsed dextran release from calcium – alginate gel beads. Journal of Controlled Release (1997) 47.
  11. Szewczyk M. T., Cwajda J.: Opatrunki nowej generacji. Zakażenia 5, 2005.
  12. Salomonsen T., Jensen H.M., Stenbæk D., Engelsen S.B.: Rapid determination of alginate monomer composition using raman spectroscopy and chemometrics., In: P. A. Williams & G. O . Phillips. Gums and Stabilisers for the Food Industry (2008) 14, 541–551.
  13. Campa C., Holtan S., Nilsen N., Bjerkan T. M. et al.: Biochemical analysis of the processive mechanism for epimerization of alginate by mannuronan C-5 epimerase AlgE4. Biochem. J. (2004) 381, 155–164.
  14. Campa C., Oust A., Skjåk-Braek G., Paulsen B. S.: Determination of average degree of polymerisation and distribution of oligosaccharides in a partially acid-hydrolysed homopolysaccharide: A comparison of four experimental methods applied to mannuronan. J. Chromatogr. A (2004) 1026, 271–281.
  15. Grimshaw J.: Analysis of glycosaminoglycans and their oligosaccharide fragments by capillary electrophoresis. Electrophoresis (1997) 18, 2408– 2414.
  16. Koketsu M., Linhardt R. J.: Electrophoresis for the Analysis of Acidic Oligosaccharides. Anal. Biochem. (2000) 283, 136–145.
  17. Vynios D. H., Karamanos N. K., Tsiganos C. P.: Advances in analysis of glycosaminoglycans: its application for the assessment of physiological and pathological states of connective tissues. J. Chromatogr. B (2002) 781, 21–38.
  18. Volpi N., Maccari F.: Electrophoretic approaches to the analysis of complex polysaccharides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (2006) 834, 1–13.
  19. Volpi N.: Micellar electrokinetic capillary chromatography determination of alginic acid in pharmaceutical formulations after treatment with alginate lyase and UV detection., Electrophoresis (2008), 29, 3504–3510.
  20. Nishide E., Tsukayama K., Chida N., Nisizawa K.: Isolation of water-soluble alginate from brown algae. Hydrobiologia (1984) 116/117, 557– 562.
  21. Draget K.I., Strand, B., Hartmann M., Valla S., Smidsrød O., Skjåk-Bræk G.: Ionic and acid gel formation of epimerised alginates; the effect of AlgE4. International J. of Biolog. Macromolecules (2000) 27, 117.
  22. Draget K i., Smidsrød O., Skjåk-Braek G.: Polysaccharides and Polyamides in the Food Industry, Properties, Production, and Patents. chapter1, vol 1, Alginates from Algae in 2005 Wiley-VCH.
  23. Qin Y:. Ion-exchange properties of alginate fibers. Text Res J (2005) 75(2), 165.
  24. Morris E.R., Rees D.A., Thom D: Characterization of alginate composition and block-structure by circular dichroism. Carbohydr. Res. (1980) 81, 305.