Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2009, vol. 39, nr 4, October-December, p. 3–13

Publication type: original article

Language: English

The conductivity measurements applied for the evaluation of controlled release of chlorhexidine from thermosensitive N-isopropylacrylamide derivative microgels

Zastosowanie pomiarów przewodnictwa do oceny badań kontrolowanego uwalniania chloroheksydyny z termowrażliwych mikrożeli, pochodnych N-izopropyloakryloamidu

Witold Musial1,, Witold Musial2,, Vanja Kokol1,, Bojana Voncina1,

1 University of Maribor, Department for Textile Materials and Design Laboratory for Chemistry Dyes and Polymers, Slovenia

2 Wroclaw Medical University, Chair and Department of Pharmaceutical Technology, Poland

Abstract

The aim of the work was the evaluation of the conductivity changes in aqueous environment, consisting of chlorhexidine, and Nisopropylacrylamide derivative microgel, during increasing the temperature between 25ºC and 42ºC, as a prerequisite to develop the this microgel for controlled release of chlorhexidine, when alterations in temperature are involved. Conductivity of studied systems underwent specific alterations, when temperature increased. For the system with polymer PNM I the values of conductivity were in the range 104,47 μS/cm – 134,70 μS/ cm, for temperature range 25ºC and 42ºC. In the case of PNM II – CX system, respective values reached 91,75 μS/cm – 135,95 μS/cm. The lowest conductivity values were observed when PNM III – CX mixture was studied: 96,90 μS/cm and 117,37 μS/cm. When a complex of derivatives of N-isopropylacrylamide with chlorhexidine under goes thermal alteration, there is a potential to obtain controlled release of chlorhexidine from the polymeric bead in the range between 25ºC and 42ºC. The affinity of chlorhexidine to the polymer may be assessed in this systems applying the conductivity measurements. The solubility of chlorhexidine in the polymeric systems should be in future evaluated, to determine role of this factor in the conductivity alterations.

Streszczenie

Celem pracy była ocena zmian przewodnictwa w środowisku wodnym, zawierającym chloroheksydynę (CX) oraz mikrożel – pochodną N-izopropyloakryloamidu, w zakresie temperatur pomiędzy 25ºC i 42ºC, jako wskaźnika służącego rozwojowi mikrożeli przeznaczonych do kontrolowanego uwalniania chloroheksydyny, pod wpływem zmian temperatury. Wraz ze zmianami temperatury w badanych preparatach wykazano specyficzne zmiany przewodnictwa. W przypadku systemu z polimerem PNM I wartości przewodnictwa były w zakresie 104,47 μS/cm – 134,70 μS/cm, dla zakresu temperatury 25ºC – 42ºC. Dla preparatu PNM II – CX odpowiednie wartości wynosiły 91,75 μS/cm – 135,95 μS/cm. Najniższe wartości zaobserwowano w przebiegu badania preparatu PNM III – CX. Wyznaczone pomiarowo wartości wynosiły w tym przypadku 96,90 μS/cm – 117,37 μS/cm. Podczas podwyższania temperatury układu zawierającego chloroheksydynę dochodzi do zmian, które umożliwiają uzyskanie kontrolowanego uwalniania chloroheksydyny z łożyska polimerowego w temperaturach pomiędzy 25ºC i 42 ºC. Powinowactwo chloroheksydyny do polimeru może być oceniane za pomocą oznaczeń konduktometrycznych. Rozpuszczalność chloroheksydyny w badanych preparatach powinna być w przyszłości przedmiotem dalszych badań, w celu oceny jej współwpływu na zmiany przewodnictwa oceniane w zróżnicowanych temperaturach.

Key words

chlorhexidine, microgel, N-isopropylacrylamide, pulsed release, thermosensitivity, conductivity

Słowa kluczowe

chloroheksydyna, mikrożel, N-izopropyloakryloamid, termowrażliwość, przewodnictwo, kontrolowane uwalnianie

References (19)

  1. Medlicott N. J., Holborow D. W., Rathbone M. J., Jones D. S., Tucker J. G.: Local delivery of chlorhexidine using a tooth-bonded delivery system. J. Control. Release (1999), 61, 337–343.
  2. Rouse D. J., Hauth J. C., Andrews W. W., Mills B. B., Maher J. E.: Chlorhexidine vaginal irrigation for the prevention of peripartal infection: A placebo-controlled randomized clinical trial. Am. J. Obstetr. Gynecol. (1997), 176, 617- 622.
  3. McClure E. M., Goldenberg R. L., Brandes N., Darmstadt G. L., Wright L. L.: The use of chlorhexidine to reduce maternal and neonatal mortality and morbidity in low-resource settings. Int. J. Gynecol. Obstetr. (2007), 97, 89–94.
  4. Lynch W., Davey P. G., Malek M., Byrne D. J., Napier A.: Cost-effectiveness analysis of the use of chlorhexidine detergent in preoperative wholebody disinfection in wound infection prophylaxis. J. Hosp. Inf. (1992), 21, 179–191.
  5. Hedin G., Hambraeus A.: Daily scrub with chlorhexidine reduces skin colonization by antibioticresistant Staphylococcus epidermidis, J. Hosp. Inf. (1993), 24, 47–61.
  6. Traore O., Allaert F. A., Fournet-Fayard S., Verriere J. L., Laveran H.: Comparison of in-vivo antibacterial activity of two skin disinfection procedures for insertion of peripheral catheters: povidone iodine versus chlorhexidine. J. Hosp. Inf. (2000), 44, 147–150.
  7. Cornelius V. J., Snowden M. J., Silver J., Fern G. R.: A study of the binding of the biologically important hematin molecule to a novel imidazole containing poly(N-isopropylacrylamide) microgel. React. Func. Polym. (2004), 58, 165–173.
  8. Zhang Y., Zhu W., Wang B., Ding J.: A novel microgel and associated post-fabrication encapsulation technique of proteins. J. Control. Release. (2005), 105, 260–268.
  9. Vihola H., Laukkanen A., Hirvonen J., Tenhu H.: Binding and release of drugs into and from thermosensitive poly(N-vinyl caprolactam) nanoparticles. Eur. J. Pharm. Sci. (2002), 16, 69– 74.
  10. Kiser P. F., Wilson G., Needham D.: Lipid-coated microgels for the triggered release of doxorubicin. J. Control. Release. (2000), 68, 9–22.
  11. The United States Pharmacopoeia 31st ed. – The National Formulary 26th ed. Rockville: The United States Pharmacopoeial Convention Inc.; 2007.
  12. Musial W., Kokol V., Voncina B.: The preliminary assessment of chlorhexidine and lidocaine release from preparations of anionic polymer, evaluated by the conductivity measurements. Polim. Med. (2009), 39, 3–15.
  13. Musial W., Kokol V., Voncina B.: The application of conductivity measurements for preliminary assessments of chlorhexidine and lidocaine hydrochloride release from methylcellulose gel at various temperatures. Polim. Med. (2009), 39, 17–29.
  14. Tan J. P. K., Tam K. C.: Application of drug selective electrode in the drug release study of pHresponsive microgels. J. Control. Release. (2007), 118, 87–94.
  15. Ambrosi A., Merkoci A., de la EscosuraMuniz A.: Electrochemical analysis with nanoparticlebased biosystems. Tr. Anal. Chem. (2008), 27, 568–584.
  16. Caraballo I., Alvarez-Fuentes J., Melgoza L. M., Millan M., Holgado M. A., Rabasco A. M., Fernandez-Arevalo M.: Validation study of the conductometrical analysis. Application to the drug release studies from controlled release systems. J. Pharm. Biomed. Anal. (1998), 18, 281–285.
  17. Sheehy P. M., Ramstad T.: Determination of the molecular complexation constant between alprostadil and alpha-cyclodextrin by conductometry: Implications for a freeze-dried formulation J. Pharm. Biomed. Anal. (2005), 39, 877– 885.
  18. Abad-Villar E. M., Etter S. F., Thiel M. A., Hauser P. C.: Determination of chlorhexidine digluconate and polyhexamethylene biguanide in eye drops by capillary electrophoresis with contactless conductivity detection. Anal. Chim. Acta. (2006), 561, 133–137.
  19. Musial W., Kokol V., Voncina B.: The use of conductometric assessments for development of pulsed release of lidocaine hydrochloride from thermosensitive N-isopropylacrylamide microgels. Polim. Med. (2009), 41, 39, 4, 15–24.