Polymers in Medicine

Polim. Med.
Scopus CiteScore: 3.5 (CiteScore Tracker 3.6)
Index Copernicus (ICV 2023) – 121.14
MEiN – 70
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download PDF

Polymers in Medicine

2009, vol. 39, nr 4, October-December, p. 15–24

Publication type: original article

Language: English

The use of conductometric assessments for development of pulsed release of lidocaine hydrochloride from thermosensitive N-isopropylacrylamide microgels

Zastosowanie pomiarów konduktometrycznych w ocenie potencjalnego pulsacyjnego uwalniania chlorowodorku lidokainy z termowrażliwych mikrożeli na bazie N-izopropyloakryloamidu

Witold Musial1,, Witold Musial2,, Vanja Kokol1,, Bojana Voncina1,

1 University of Maribor, Department for Textile Materials and Design, Laboratory for Chemistry Dyes and Polymers, Slovenia

2 Wroclaw Medical University, Chair and Department of Pharmaceutical Technology, Poland

Abstract

The aim of present work was preliminary assessment of the conductivity changes in aqueous compartment, consisting of lidocaine hydrochloride, and N-isopropylacrylamide derivative microgel, during increasing the temperature between 25º and 42ºC, as a prerequisite to demonstrate the possibility of applying this microgel for pulsed release of lidocaine hydrochloride, when increased temperature is applied. Conductivity of respective systems composed of polymer and lidocaine hydrochloride were assigned as PNM I-LD, PNM II-LD, and PNM III-LD: obtained values were in the ranges: 39,91 μS/cm – 53,30 μS/cm in the 25ºC temperature, 46,14 μS/cm – 56,16 μS/cm in the temperature of 32ºC, and 53,30 μS/cm – 118,42 μS/cm at 42ºC. During heating or cooling of the microgels derivatives of N-isopropylacrylamide, there is possibility to obtain pulsed release of lidocaine hydrochloride from the polymeric bead in the range between 25ºC and 42ºC, according to the conductivity measurements.

Streszczenie

Celem pracy była wstępna ocena zmian przewodnictwa w kompartmencie wodnym, zawierającym chlorowodorek lidokainy i mikrożel – pochodną N-izopropyloakryloamidu, w trakcie zmian temperatury w przedziale pomiędzy 25ºC i 42ºC, jako wskazówki do wykazania możliwości zastosowania tych mikrożeli w pulsacyjnym uwalnianiu substancji leczniczej wraz ze zmianami temperatury. Przewodnictwo systemów składających się odpowiednio z polimeru i chlorowodorku lidokainy w systemach oznaczonych jako PNM I-LD, PNM II-LD i PNM III-LD wynosiło 39,91 μS/cm – 53,30 μS/cm w temperaturze 25ºC, 46,14 μS/cm – 56,16 μS/cm w temperaturze 32ºC oraz 53,30 μS/cm i 118,42 μS/cm w temperaturze 42ºC. Podczas ogrzewania lub chłodzenia mikrożeli, pochodnych N-izopropyloakrylamidu, istnieje możliwość uzyskania pulsacyjnego uwalniania chlorowodorku lidokainy z podłoża polimerowego, w zakresie temperatur pomiędzy 25ºC i 42ºC, jak na to wskazują pomiary przewodnictwa.

Key words

lidocaine hydrochloride, microgel, N-isopropylacrylamide, pulsed release, thermosensitivity, conductivity

Słowa kluczowe

chlorowodorek lidokainy, mikrożel, N-izopropyloakryloamid, uwalnianie pulsacyjne, termowrażliwość, przewodnictwo

References (20)

  1. Meechan J. G.: Intra-oral topical anaesthetics: a review. J. Dent. (2000), 28, 3–14.
  2. Gacto P., Miralles F., Pereyra J. J., Perez A., Martinez E.: Haemostatic effects of adrenalinelidocaine subcutaneous infiltration at donor sites. Burns. (2009), 35, 343–347.
  3. Wallace M. S., Oxman M. N.: Acute Herpes zoster and postherpetic neuralgia. Anesthes. Clin. North Am. (1997) 15 371–405.
  4. Giannarini G., Autorino R., Valent F., Mogorovich A., Manassero F., De Maria M., Morelli G., Barbone F., Di Lorenzo G., Selli C.: Combination of Perianal-Intrarectal LidocainePrilocaine Cream and Periprostatic Nerve Block for Pain Control During Transrectal Ultrasound Guided Prostate Biopsy: A R andomized, Controlled Trial. J. Urol. (2009), 181, 585– 593.
  5. Haasio J., Numminen M., Rosenberg P. H., Jokinen T.: Topical anaesthesia of gingival mucosa by 5% eutectic mixture of lignocaine and prilocaine or by 10% lignocaine spray., Brit. J. Oral Maxillofac. Surg. (1990), 28, 99–101.
  6. Mason R., Drum M., Reader A., Nusstein J., Beck M.: A Prospective, Randomized, Doubleblind Comparison of 2% Lidocaine With 1:100,000 and 1:50,000 Epinephrine and 3% Mepivacaine for Maxillary Infiltrations. J. Endodont. (2009), 35, 1173–1177.
  7. Caracas H. C. P. M., Maciel J. V. B., Martins P. M. R. S., de Souza M. M. G., Maia L. C.: The use of lidocaine as an anti-inflammatory substance: A systematic review. J. Dent. (2009), 37, 93–97.
  8. Lie R. L., Vermeer B. J., Edelbroek P. M.: Severe lidocaine intoxication by cutaneous absorption. J. Am. Acad. Dermatol. (1990), 23, 1026–1028.
  9. Salamat-Miller N., Chittchang M., Johnston T. P.: The use of mucoadhesive polymers in buccal drug delivery. Adv. Drug Deliv. Rev. (2005), 57, 1666–1691.
  10. Kang L., Jun H. W., Mani N.: Preparation and characterization of two-phase melt systems of lidocaine. Int. J. Pharm. (2001), 222, 35–44.
  11. Salas S., Talero B., Rabasco A. M., GonzalezRodriguez M. L.: Development and validation of a reverse-phase liquid chromatographic method for the assay of lidocaine hydrochloride in alginate-Gantrez(R) microspheres. J. Pharm. Biomed. Anal. (2008), 47, 501–507.
  12. Gorner T., Gref R., Michenot D., Sommer F., Tran M. N., Dellacherie E.: Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. J. Control. Release.(1999), 57, 259–268.
  13. Liu D.Z., Sheu M.-T., Chen C.-H., Yang Y.-R., Ho H.-O.: Release characteristics of lidocaine from local implant of polyanionic and polycationic hydrogels. J. Control. Release. (2007), 118, 333–339.
  14. Jeong B., Kim S. W., Bae Y. H.: Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. (2002), 54, 37–51.
  15. Fundueanu G., Constantin M., Ascenzi P.: Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: Influence of the physico-chemical characteristics of drugs on their release profiles. Acta Biomat. (2009), 5, 363–373.
  16. Tasdelen B., Kayaman-Apohan N., Guven O., Baysal B. M.: Preparation of poly(Nisopropylacrylamide/ itaconic acid) copolymeric hydrogels and their drug release behavior. Int. J. Pharm. (2004), 278, 343–351.
  17. Park S., Swerdlow H.: Miniature Electrolytic Conductivity Probe with a Wide Linear Range Electroanalysis. (2007), 19, 2294–2300.
  18. Lorente E., Rodríguez A., Aicart E., Junquera E.: Non-ionic and cationic micelle nanostructures as drug solubilization vehicles: spectrofluorimetric and electrochemical studies. J. Coll. Polym. Sci. (2007), 285, 1435–1536.
  19. Kantarci G., Özgüney I., Karasulu H. Y., Arzik S., Güneri T.: Comparison of different water/oil microemulsions containing diclofenac sodium: Preparation, characterization, release rate, and skin irritation studies, J. AAPS PharmSciTech. (2007), 8, 75–81.
  20. Merclin N., Beronius P.: Improvements of conductivity measurements of electrolyte solutions using a new conductometric cell design. J. Pharm. Biomed. Anal. (2002), 29, 61–67.