Comprehensive review of the role of acrylic acid derivative polymers in floating drug delivery system

Beena Kumari^{1,2,A-C}, Aparna Khansili^{2,B,D-E}, Parmita Phougat^{3,B,D}, Manish Kumar^{4,D,F}

- ¹ Department of Pharmaceutical Sciences, Indira Gandhi University, Rewari, India
- ² Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
- ³ Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, India
- ⁴ MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
- A research concept and design; B collection and/or assembly of data; C data analysis and interpretation;
- D writing the article; E critical revision of the article; F final approval of the article

Polymers in Medicine, ISSN 0370-0747 (print), ISSN 2451-2699 (online)

Polim Med. 2019;49(2):71-79

Address for correspondence

Manish Kumar E-mail: manish_singh17@rediffmail.com

Funding sources

None declared

Conflict of interest

None declared

Received on January 28, 2020 Reviewed on March 31, 2020 Accepted on May 4, 2020

Abstract

In the development of drug delivery systems, an oral drug delivery system is the preferred route of drug administration. Many components play an important role in developing a drug delivery system. Amongst those components, polymers have evolved with these systems. Macromolecule compounds consisting of many monomer units which are joined to each other by different bonds are known as polymers. For drugs that are absorbed primarily in the upper gastrointestinal tract, floating drug delivery systems offer an additional advantage. The purpose behind this review was to focus on different types of floating drug delivery systems and different types of polymers used in floating drug delivery systems, focusing on acrylic acid derivatives and their applications. In this review, the main emphasis is on acrylic acid derivative polymers, their formulation and grades, and various patents on these types of polymers. Based on the literature survey, mainly 2 types of polymers are used in this drug delivery system; i.e., natural and synthetic. Examples of natural polymers are xanthan gum, guar gum or chitosan, and synthetic polymers include acrylic acid derivatives and hydroxylpropyl methylcellulose (HPMC). Eudragit and Carbopol are the most widely used acrylic acid derivatives.

Key words: acrylic polymers, Eudragit, floating drug delivery system, acrylic acid derivatives, carbomer

Cite as

Kumari B, Khansili A, Phougat P, Manish Kumar M.
Comprehensive review of the role of acrylic acid derivative polymers in floating drug delivery system. *Polim Med*. 2019;49(2):71–79. doi:10.17219/pim/122016

DOI

10.17219/pim/122016

Copyright

© 2020 by Wroclaw Medical University
This is an article distributed under the terms of the
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
(https://creativecommons.org/licenses/by/3.0/)

Introduction

A gastro-retentive drug delivery system (floating), which is less dense than gastric fluids, thus remaining buoyant in the stomach for a prolonged period, and which does not affect the gastric emptying rate is known as a floating drug delivery system (FDDS).¹ Floating drug delivery systems are also known as hydrodynamically balanced systems (HBS). The system floats within the gastric contents and the drug is released at the desired rate from the system.^{2,3} The remainder of the system is emptied from the stomach after the release of the drug; as a result, an increased gastric residence time (GRT) and a better control of fluctuations in plasma drug concentration can be achieved. The differences between zero-order controlled release and sustained release are shown in Fig. 1.

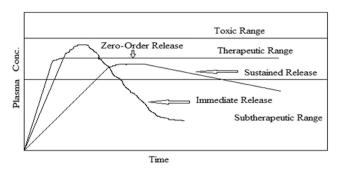
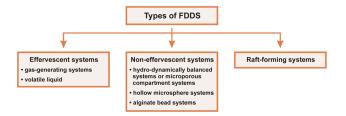



Fig. 1. Drug release profile, showing the differences between zero-order controlled and sustained release

Types of floating drug delivery systems

There are various types of commercially available $FDDSs^{4,5}$ through which drugs are administered to the body and the effective controlled release of a drug is achieved. Some of these formulations are described in Table 1.6

Polymers used in floating drug delivery systems

In a floating drug delivery system, many polymers are used to target drug delivery at a specific region within the stomach. Both types of polymers, i.e., synthetic and natural, are used in such a system. Natural polymers like chitosan, xanthan gum and sodium alginate are used in a floating system, while synthetic polymers, such as hydroxylpropyl methylcellulose (HPMC), ethyl cellulose and acrylic acid derivatives, are used for the floating drug delivery. Different natural and synthetic polymers and their properties are listed in Table 2.

Natural polymers have some inherent disadvantages, such as microbial contamination, variation between batches, uncontrolled hydration rate, and loss of viscosity in storage.⁸

Synthetic polymers

Synthetic polymers are macromolecules with very large chains containing a variety of functional groups. They have a very wide range of uses, and are thus becoming more and more important in pharmaceuticals. The uses of synthetic polymers, e.g., as a binder or film coating agent for targeted drug delivery, are very common. Synthetic polymers are either purely synthetic or semi-synthetic, the latter being a modified form of natural polymers.⁹

Some examples of synthetic polymers are Eudragit or Carbopol, which are acrylic acid derivatives, and HPMC.

Name of the product	Active ingredient	Category	Remarks
Madopar	levodopa and benserazide	anti-parkinsonian	floating, controlled-release (cr)
Valrelease	diazepam	anti-anxiety	floating capsule
Gaviscon	Al hydroxide Mg carbonate	antacid (in reflux esophagitis)	effervescent floating liquid alginate preparation
Cytotec	misoprostol	antiulcer	floating dosage form
Topalkan	alginic acid, aluminium and magnesium salts	antacid	floating liquid alginate preparation
Almagate flowcoat	Al-Mg antacid	antacid	floating dosage form

Polim Med. 2019;49(2):71–79 73

No.	Polymer (type)	Source	Properties
1.	guar gum (natural)	endosperm of seed of cynopsis tetragonolobus	insoluble in organic solvents, strong hydrogen bond
2.	chitosan (natural)	shell of marine invertebrates	nontoxic, biodegrable, biocompatible
3.	xanthan gum (natural)	fermentation of glucose by <i>Xanthomonas campestris</i>	excellent solubility and stability under acidic and alkaline conditions
4.	gellan gum (natural)	Pseudomonas elodea	high gel strength, an excellent stability, process flexibility, high clarity
5.	sodium alginate (natural)	Laminaria hyperboria	acidity/alkalinity ph-7.2 (1% w/v aqueous solution)
6.	Eudragit (synthetic)	acrylamide monomer	Eudragit S and FS are soluble at pH above 7 while Eudragit L is soluble at pH above 6. Eudragit RL, NE 40D, RS, NE 30D, and NM 30D are used to form water-insoluble film coats.
7.	ethyl cellulose (synthetic)	prepared from cellulose, it is a partly O-ethylated cellulose, its ethoxy content (-OC $_2$ H $_5$) is 44–51%	water-insoluble cellulose ether

Acrylic acid

Byproduct of the production of ethylene and gasoline, acrylic acid is produced by the oxidation of propylene:

$$CH_2=CHCH_3 + \frac{3}{2}O_2 \rightarrow CH_2=CHCO_2H + H_2O$$

The IUPAC name of acrylic acid is propenoic acid. It is an organic compound with the formula CH₂=CHCOOH. It has good solubility with water, ethers, chloroform, and alcohols.¹⁰

Acrylic acid derivatives

There are many derivatives for the preparation of floating microspheres to be used as polymers. Of these numerous polymers, Eudragit and Carbopol are the most commonly used derivatives. A derivative of acrylic and methacrylic acids, such as Eudragit and its various grades – RL, E and RS – are used in the preparation of floating microspheres. ¹⁰ The grades RL 100 and RS 100 are both granular in nature and are the most widely used forms of any pH-independent swelling polymer with muco/adhesive properties. ¹¹

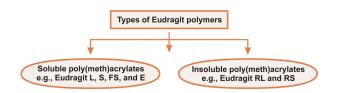
For sustained-release products and to form water-insoluble film coatings, Eudragit RL, NM 30D, NE 30D, RS, and NE 40D are used. Varying permeability films can be obtained by mixing any 2 polymers, but Eudragit RL films are more permeable than Eudragit RS. In aqueous as well as organic wet-granulation processes, polymethacrylates

are also used as binders. To control the release of a drug from a tablet matrix, more (5–20%) dry polymer is used; solid polymers (10–50%) may be used in direct compression processes. To prepare novel gel formulations for rectal delivery and the matrix layers of transdermal delivery systems, polymethacrylate polymers are also used.¹²

History of Eudragit

Before the 19th century, the control of drug release time and its release site was impossible. In order to remove this main drawback, scientists can use polymers to plan and modulate the release of drug. The discovery of Eudragit by Rohm and Haas played a major role in finding the solution to this problem. Over time, various grades of Eudragit have been discovered, with varying degrees of solubility. To coat solid drugs, as with tablets, capsules or granular formulations, Eudragit is used as an excipient. Then, in the 1950s, the use of Eudragit in drug release was first discovered when a coated pill that dissolves in stomach acid was released. Since then, many other variants of Eudragit which control the drug release time have become available, but these are called retard preparations because they release their drugs at intestinal pH due to their resistance to stomach pH.13 Eudragit is a trademark of Rohm GmbH and Co. KG. Eudragit is produced through the polymerization of acrylic and methacrylic acids or their esters, such as butyl ester.14 The different grades of Eudragit are introduced in chronological order in Table 3.

Glass transition temperature


In the description of the physical properties of polymers, glass transition temperature is an important factor. The solidification of an anisotropic polymer melt is

Grade of Eudragit	Year of introduction	Available form	Glass transition temperatures (Tg)	Dissolution properties	Applications
RL 100	1968	granules	63	insoluble	sustained release
RL 30 D	1986	30% aqueous dispersion	55	pH-independent	sustained release
RS 100	1968	granules	65	insoluble	sustained release
RL 12.5	1954	12.5% organic solution	130 (±5)	-	sustained release
RL PO	1972	powder	63	high permeability	sustained release
RS 12.5	1954	12.5% organic solution	130 (±5)	-	sustained release
RS PO	1972	powder	65	low permeability	film coating
NE 40 D	1983	40% aqueous dispersion	-8	pH-independent swelling	film coating
RS 30 D	1986	30% aqueous dispersion	55	pH-independent swelling	sustained release
NE 30 D 30 %	1972	aqueous dispersion	-8	Insoluble, low permeability	film coating

Table 3. Specifications and applications of different grades of Eudragit

described on a macroscopic level. In short, as the temperature is increased, the glass transition or glass—liquid transition is the reversible change in an amorphous product from a solid and moderately brittle "glassy" state into a rubbery or viscous state. The glass transition temperature of different grades of Eudragit is presented in Table 3.

Types of Eudragit polymers

1. Soluble poly(meth)acrylates

Soluble poly(meth)acrylates will dissolve in digestive fluids by forming salt and are able to release a drug at certain pH levels with acidic or alkaline groups.

Applications

Through simple masking and gastric resistance, the drug is delivered to all sections of the intestine for controlled drug release.

2. Insoluble poly(meth)acrylates

Insoluble poly(meth)acrylates are permeable in digestive fluids but insoluble in nature. For example, by pH-independent swelling Eudragit RL and RS polymers are able to control the drug release time in alkaline conditions, while Eudragit NE polymers are able to do so with neutral groups.

Advantages of Eudragit polymers

The advantages of the acrylic acid derivative 16 Eudragit are listed in Fig. 2.

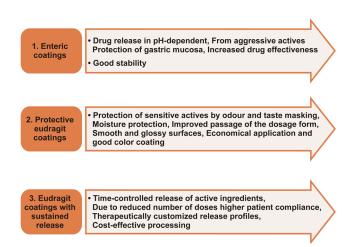


Fig. 2. Advantages of Eudragit polymers

Carbopol

Another acrylic acid derivative with a high mucoadhesive property and a high swelling property is Carbopol; it is very often used in FDDSs. Carbopol is used alone and in combination with other polymers, such as Eudragit or natural polymers, in preparations of floating formulations. 17-19 By using the emulsification solvent evaporation method, floating microspheres can also be prepared with different grades of Carbopol: Carbopol 934, Carbopol 910, Carbopol 940, and Carbopol 941. The different grades of carbomer and their uses, viscosities and properties are described in Table 4. This floating system has been accepted as a process to accomplish controlled drug delivery by delaying the residence time of the dosage form at the site of absorption, thereby enhancing the bioavailability of the active ingredient.^{20–22} The advantages of this polymer are summarized in Fig. 3.

Polim Med. 2019;49(2):71–79 75

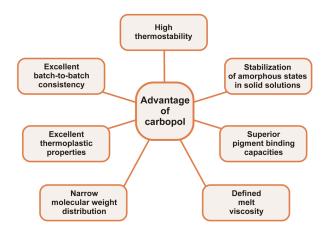


Fig. 3. Advantages of Carbopol polymers

Pharmaceutical applications of acrylic acid derivatives

There are numerous applications of acrylic acid derivatives; they are primarily used as tablet coatings, film forming agents, tablet binders, etc. Eudragit E12.5 is a 12.5% solution in propanol acetone (60:40) with a molecular weight of 32,000 g/mol. It is available as an organic solution and is mainly used as a film coating agent. It appears light yellowish in color and is soluble at a pH of less than 5. It is miscible in ethyl acetate, acetone, alcohols, 1N HCl, dichloromethane, and petroleum ether.

Eudragit E100 is used for a targeted area such as the stomach. It is accessible as tinged granules which are colorless or yellow in color with an amine-like odor. Its properties include great pigment binding capacity, low polymer weight, low viscosity, and good adhesion. The solubility characteristics of Eudragit E100 are similar to Eudragit 12.5. Eudragit grade RSPO is available as a white powder and has a faint amine-like odor, while Eudragit RS 100 is available as a colorless granule with an odor similar to Eudragit RSPO. 15 The description and uses of Carbopol derivatives are presented in Table 4. The role of these polymers is depicted in Fig. 4.

Fig. 4. The role of acrylic acid derivatives in drug delivery

Eudragit E PO is available as a free-flowing white powder which is used as a film coating agent. It is soluble in acetone and alcohols and in a pH of less than 5. Eudragit RS 100, RS 30D, RS 12.5, and RSPO are copolymers with quaternary ammonium groups of methyl methacrylate, ethyl acrylate and a small amount of methacrylic acid ester. The ammonium groups exist as salts and this permeability is an asset. Eudragit grade RS 30 D is available in liquid form. It has squat viscosity, a faint, characteristic odor, and a milky white color. The widespread applications of different acrylic acid derivatives as single polymers or in combination with other natural or synthetic polymers are summarized in Table 5 along with their dosage form and method of preparation.

Different grades of Eudragit, such as RSPO, are available in powder form, while RS 30D, RS 100, and RS 12.5 are accessible in granular form, 30% aqueous dispersion and organic solution (12.5%), respectively; all grades are insoluble. They show pH-independent swelling with low permeability. Different grades of Eudragit are used in various ratios for the controlled and modified release profile.⁵⁹ Out of the many grades of Eudragit, a brief outline on RS 30D, RS 100 and RSPO is provided in Table 6.

Table 4. Different grades of carbomers and their properties

Name of polymer	Viscosity [Pa·s]	Used in dosage forms	Properties
Carbopol 910	3,000-7,000	emulgel, liposomal gel	Effective in low fixations and give a low consistency formulation.
Carbopol 940	40,000-60,000	emulgel	Effective in thick formulations and very great clarity in water or hydroalcoholic topical gels. Forms clear gels with hydroalcoholic frameworks.
Carbopol 941	4,000-11,000	emulgel	Produces low consistency gels and great clarity.
Carbopol 934	30,500–39,400	jojoba oil-based emulgel	Effective in thick details, for example, emulsions, suspensions, sustained release formulations, transdermals, and topicals. Forms clear gels with water.
Carbopol 934P	29,400–39,400	emulgel, liposomal gel	Same properties as 934; however, expected for pharmaceutical plans. "P" = exceptionally purified product

Table 5. List of drugs with their dosage form for gastric retention

Drug	Polymer	Dosage form	Method used	Reference
Ofloxacin	ethyl cellulose, sodium bicarbonate, Eudragit RL 30D	pellets	extrusion-spheronization	25
Itraconazole	chitosan	microspheres	ionotropic gelation	26
Norfloxacin	Eudragit®L100, Eudragit®RS 100	microballoons	emulsion solvent diffusion	27
Nifedipine	ethyl cellulose	microspheres	solvent evaporation	28
Bumetanide	Eudragit RS 100, sodium chloride, triethyl citrate	pellets	fluid bed layering and coating	29
Famotidine	Eudragit S 100	microspheres	solvent evaporation	30
Levodopa	gelatin, ethyl cellulose, carbidopa, L-polylactic acid, Eudragit S 100	novel unfolded CR-GRDF	solvent evaporation	31
Acacia catechu	Carbapol, HPMC and sodium CMC	microspheres	solvent evaporation	32
Pantaprazole	Eudragit L 100 and RS 100	microballoons	emulsion solvent diffusion	33
Piroxicam	alginate, pectin and HPMC	beads	ionotropic gelation method	34
Diclofenac potassium	Kollicoat SR 30D, Eudragit NE 30D and RS 30D	pellets	extrusion–spheronization	35
Carvedilol	chitosan	beads	ionotropic gelation method	36
Metformin hydrochloride	polyethylene oxide and Eudragit®L100	matrix tablets	direct compression	37
5- Fluorouracil	ethyl cellulose	microspheres	emulsion solvent diffusion	38
Levodopa	Eudragit®RL 30D, acetyl, triethyl citrate	floating coated mini-tabs	melt granulation and compression	39
Procynanidins	chitosan	capsules containing beads	ionotropic gelation method	40
Riboflavin	Eudragit L and Eudragit S plasticized with triethyl citrate	unfolding dosage form	accordion pill technology	41
Anthocyanin	calcium alginate, calcium carbonate, sodium acetate anhydrous and calcium chloride	microspheres	ionotropic gelation method	42
Diltiazem hydrochloride	sodium alginate, CaCO ₃ , CaCl ₂ , Eudragit RS 30D, and chitosan	floating microspheres	ionotropic gelation method	43
Clarithromycin	ethyl cellulose and HPMC E5	microspheres	solvent evaporation	44
Rabeprazole sodium	MC, Mannitol SD 200, Colorcoat EC4S, Kollidon CL	enteric coated tablet	wet granulation and direct compression	45
Nizatidine	Eudragit S 100 and HPMC	microballoons	emulsion solvent diffusion	46
Riboflavin	Eudragit RS 100 and HPMC	microballoons	emulsion solvent diffusion	47
Metformin	HPMC K4M, ethyl cellulose	microballoons	solvent evaporation	48
Ketoprofen floating	Eudragit S 100 and RL 100	microparticles	emulsion solvent diffusion	49
Meclizide HCL	HPMC K 15M, Eudragit S 100 and RS 100	microspheres	solvent evaporation	50
Riboflavin	Eudragit S 100, PVA, dichloromethane, HPMC, and ethanol	microballoons	emulsion solvent diffusion	51
Repaglinide	PC, PPG	microspheres	solvent evaporation	52
Verapamil	Povidone K 30, talc, Eudragit NE 30 D and L 30 D, triethyl citrate	floating pellets	wet granulation and spheronization	53
Curcumin	ethyl cellulose	microspheres	emulsion solvent diffusion	54
Felodipine	ethyl cellulose	hollow microspheres	emulsion solvent diffusion	55
Riboflavin	Eudragit RS 100 and HPMC	microballoons	emulsion solvent diffusion	56
Fluconazole	Carbopol 934	liposomal gel	simple gelation method	57
Ketoconazole	Carbopol 934 and 940	emulgel	simple gelation method	58

Recently, Carbopol- and Eudragit-based formulations were collected for various patents and it was observed that formulations prepared using both of these polymers have been patented for diversified uses. Some of the patented applications are listed in Table 7, e.g., for colonic drug delivery, enhanced stability, improved bioavailability, improved hardness, oral drug delivery, reaction of carbomers, prolonged drug release, etc.⁵⁹

Conclusions

Acrylic acid derivative polymers have made significant contributions to various formulations due to their unique properties. In this article, the role of Carbopol and Eudragit was observed as novel and useful polymers, which can become more important in the future. This comprehensive review of 78 references signi-

Polim Med. 2019;49(2):71–79

Table 6. Specifications of Eudragit RS 30D, RS 100 and RSPO

Drug name	Grade of Eudragit	Method of preparation	Dosage form	Significance	Reference
Oxymatrine	Eudragit RS 30D	extrusion/spheronization	pellets	sustained release of drug for 12 h	60
Stavudine	Eudragit RSPO	solvent evaporation method	microspheres	sustained release	61
Ketoprofen	Eudragit RS 30D	same as in reference 60	pellets	The initial drug release is minimized but the terminal drug release increased more significantly.	62
Lobenzarit disodium	Eudragit RSPO	direct compression	tablet	slow drug release	63
Ambroxol hydrochloride	Eudragit RS 30D	same as in reference 60	pellets	stable as well as sustained release formulation	64
Verapamil hydrochloride	Eudragit RS 100	wet granulation method	matrix tablets	Coating with Eudragit RS 100 polymer reduced initial drug release.	65
Diclofenac sodium	Eudragit RS 30D	roto agglomeration	pellets	extended drug release for 24 h	66
Terbinafine hydrochloride	Eudragit RS 100	nano preciptation method	nanoparticles as eye drop	improved ocular bioavailability	67
Alfuzosin hydrochloride	Eudragit RSPO	same as in reference 63	tablets	The drug release was prolonged for 20 h.	68
Clotrimazole	Eudragit RS 100	spray drying technique	tablets containing microspheres	controlled intravaginal drug release	69
Theophylline	Eudragit RSPO	rotary tablet press	microtablets	sustained release	70
Genistein	Eudragit RS 100	melt-emulsification technique	nanostructured lipid carrier	Corneal penetration increases 3.3-fold.	71

Table 7. Patents on applications for acrylic acid derivatives

Title of the patent	Invention	Patent No.	Reference
Zinc/pectin beads with a Eudragit coating for colonic delivery	The systems comprise pectin beads which are cross-linked with any divalent cation or zinc which are coated with Eudragit polymers.	US 20080124279	73
With enhanced mechanical properties modified release tablet formulations	For said pharmaceutical formulation Eudragit L00-55 is used which achieves a desired hardness.	US 2007010	74
Enhanced stabilization of misoprostol	Misoprostol was complexed with several grades of Eudragit, such as RS series, RL series, Eudragit S and L; the solid dispersions were stable and showed sustain release.	EP0896823	75
Preparation method for the carbomer	Reaction in a mixed solvent of ethyl acetate and n-hexane and cyclohexane.	201310453464.3	-
Ursodeoxycholic acid-synthetic hydrotalcite- eudragit hybrid, pharmaceutical composition and method for preparing the same	The ursodeoxycholic acidsynthetic hydrotalcite-eudragit hybrid was used for bitter-taste-blocking effect and with high solubility improved body absorption rate.	US 2012015 6263	76
Oral drug delivery formulations	One active substance and minimum 1 coat containing Eudragit E in order to manage pain the preparation may be used for releasing loading dose up to about 55% of a total dose.	US 20150250733	77
Preparation of carbomers	Carbomer portion of the reaction medium is water instead of organic solvent such that the process toward the preparation of non-toxic carbomer, development of green direction.	201410010540.8	-
Coated senna extract granules	With 20% sennosides obtained from Senna extract are granulated with Eudragit grade L 100 and then covered with Eudragit grade L 30 D 55.	Wo/2011/014976	78

fies the uses of various grades of Eudragit and Carbopol polymers, which are the most widely used acrylic acid derivatives. The various drugs, dosage forms, and methods used to prepare formulations based on them have been described with all necessary details. These details are sufficient for the reader to understand the basic role of acrylic acid derivatives in different formulations. Some patents are also discussed in order to describe the current status of these polymers. Therefore, researchers can use this review as a guide to develop drug delivery systems based on acrylic acid derivatives, i.e., using Eudragit or Carbopol.

ORCID iDs

References

- Avinash Y, Kaushik A, Tiwari K, Gaur A. Role of excipients and polymeric advancements in preparation of floating drug delivery systems. *Int J Pharm Investig.* 2015;5(1):1–12.
- 2. Nayak AK, Maji R, Das B. Gastro-retentive drug delivery systems: A review. *Asian J Pharma Clin Res.* 2010;3(1):2–9.
- 3. Lee JH, Park TG, Choi HK. Development of oral drug delivery system using floating microspheres. *J Microencapsul*. 1999;16:715–729.

- 4. Bansal AK, Chawla G, Gupta P, Koradia V. Gastro-retention: A means to address regional variability in intestinal absorption. *Pharma Tech.* 2003;2(1):50–68.
- 5. Zubedi SS, Mohammed S. Floating tablets and its polymers. *J Drug Deliv Therapeutics*. 2018;8(5):16–24.
- 6. Jain SK, Jain NK, Agrawal GP. Gastro-retentive floating drug delivery: An overview. *Drug Deliv Technol*. 2005;5:7–15.
- 7. Kumar G. Natural polymers in the development of floating drug delivery systems: A review. *Int J Pharm Life Sci.* 2013;2(4):165–178.
- 8. Darekar D. An overview on natural gum and its pharmaceutical application. *Int J Uni Pharmacy Biosci.* 2013;2:535–547.
- Darekar D, Gupta P. An overview on natural gum and its pharmaceutical application. Int J Uni Pharmacy Biosci. 2014; 2: 432–447.
- 10. Joshi M. Role of Eudragit in targeted drug delivery. *Int J Curr Pharm Res.* 2013;5:58–62.
- 11. Sonje A, Chandra A. Comprehensive review on eudragit polymers. *Int Res J Pharm.* 2013;4:71–74.
- Rowe R, Paul S. *Pharmaceutical Press*. Handbook of Pharmaceutical Excipient. 6th ed., 2009.
- Stam JJ, Vink J, Lecessies S, Bruijin JA, Bregman W. Topical tretinoin under occlusion on a typical navei. Melanoma Res. 1988;8:539–548.
- Rieger MM, Lachman & Lieberman HA, Kanig JL. The Theory and Practice of Industrial Pharmacy. 3rd ed. 1986.
- Gupta P, Kumar M, Sachan N. An overview on polymethacrylate polymers in gastro-retentive dosage forms. Open Pharmaceutical Sciences J. 2015;2:31–42.
- Joshi M. Role of eudragit in targeted drug delivery. Int J Current Pharma Res. 2013;5(2):202.
- Rayehe TR, Zahra JA, Seyed AM. Formulation and evaluation of captopril floating matrix tablets based on gas formation. Afr J Pharm Pharmacol. 2013;6:2438–2444.
- Padma PS, Vandana P, Nisha V, Kausalya J, Vaijayanthi V, Ravichandiran V. Formulation and evaluation of gastro-retentive floating tablets of atenolol. J Pharm Res. 2011;4:3709–3711.
- Tripathi GK, Singh S, Nath G. Formulation and in-vitro evaluation of pH-sensitive oil entrapped polymeric blend amoxicillin beads for the eradication of Helicobacter pylori. Iran J Pharm Res. 2012;11:447–455.
- Kumar S, Chand T. Formulation and development of floating and mucoadhesive microspheres of clarithromycin. *Pharm Innov J.* 2013;2:19–26.
- Gangdharappa HV, Biswas S, Getyala A, Gupta V, Kumar PT. Development, in-vitro and in-vivo evaluation of novel floating hollow microspheres of Rosiglitazone Maleate. *Der Pharm Lett*. 2011;3:299–316.
- 22. Wang J, Cui F, Shi K, Yang L, Wang S, Zhang L. In vivo evaluation of a sustained-release multiple-unit floating system containing nitrendipine. *Asian J Pharm Sci.* 2008;3:1517.
- 23. Samala ML, Sridevi G. Role of polymers as gelling agents in the formulation of emulgels. *Polym Sci.* 2016;1:21–32.
- 24. Prusty A, Gupta BK. Role of chitosan and eudragit in polymer-based extended release matrix tablets: A review. *Int J Pharm Sci Res.* 2017;8(12):4973–4982.
- Chein YW. Novel Drug Delivery Systems. 2nd ed. New York, NY: Marcel Dekker; 2009.
- Gokbulut E, Vural I, Aşıkoğlu ON. Floating drug delivery system of itraconazole: Formulation, in vitro and in vivo studies. J Drug Delivery Sci Tech. 2019;49:491–501.
- Zhang C, Xu MA. Floating multiparticulate system for ofloxacin based on a multilayer structure: In vitro and in vivo evaluation. *Int* J Pharm. 2012;430:141–150.
- Parida P, Mishra SC, Sahoo S, Behera A, Nayak BP. Development and characterization of ethyl cellulose based microsphere for sustained release of Nifedipine. *J Pharma Analysis*. 2016;6:341–344.
- 29. Chaturvedi AK, Verma A, Singh A, Kumar A. Formulation and characterization of microballoons of norfloxacin. *J Drug Deliv Therapeutics*. 2011;1(2):21–26.
- 30. Gupta R, Prajapati SK, Pattnaik S, Bhardwaj P. Asian Pac J Trop Biomed. 2014;4(9):729–735.
- Ehab H, Myron CG, Ronald WM, Adel S. A study of the pharmacodynamics differences between immediate and extended release bumetanide formulation. *Int J Pharm.* 2003;267:129–140.
- Khare B, Dubey N, Sharma A. Antiulcer activity of controlled release formulation containing aqueous extract of acacia catechu wild on rodent models. Int J Curr Pharm Res. 2018;10(5):25–31.

- 33. Gupta P, Kumar M, Kaushik D. Pantoprazole sodium loaded microballoons for the systemic approach: In vitro and in vivo evaluation. *Adv Pharm Bull.* 2017;7(3):461–467.
- Giulia A, Andrea C, Francesca S, Aldo P, Silvana M, Rita P. Polysaccharides based gastro-retentive system to sustain piroxicam release: Development and in vivo prolonged anti-inflammatory effect. *Biomac*. 2018;6:213–219.
- Atyabi F, Sharma HL, Mohammad, HA, Fell JT. In vivo evaluation of a novel gastro-retentive formulation based on ion exchange resins. J Control Release. 1996;42:105–113.
- Radhakrishnan P, Verma P, Jayachandran V, et al. In vitro and in vivo evaluation of gastro-retentive carvedilol loaded chitosan beads using Gastroplus TM. Int J Biol Macromol. 2017;10:1016.
- Jijun F, Xiaoli W, Lishuang X, Jia M. Preparation and in vitro in vivo evaluation of double layer coated and matrix sustained release pellet formulations of Diclofenac Potassium. *Int J Pharm.* 2011;406:84–90.
- Huang Yu, Yumeng Wei, Hongru Y, et al. A 5-fluorouracil-loaded floating gastro-retentive hollow microsphere: Development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice. *Drug Des Devel Ther.*. 2016;10:997–1008.
- Colo G, Falchi S, Zambito Y. In vitro evaluation of a system for pH-controlled peroral delivery of metformin. J Control Release. 2002;80:119–128.
- 40. Chen R, Guo X, Liu X, Cui H, Wang R, Han J. Formulation and statistical optimization of gastric floating alginate/oil/chitosan capsules loading procyanidins: In vitro and in vivo evaluations. *Int J Biol Macromol.* 2017;108:219–229.
- 41. Goole J, Deleuze P, Vanderbist F, Amighi K. New levodapa sustained release floating mini tablets coated with insoluble acrylic polymer. *Eur J Pharm Sci.* 2008;68:310–318.
- 42. Giovana B, Celli, Amyl G, Marianne S. Development and evaluation of floating alginate microspheres for oral delivery of anthocyanins: A preliminary investigation. *Food Sci Nutr.* 2017;5(3):713–721.
- 43. Kagan L, Lapidot N, Afargan M, Kirmayer D. Gastro-retentive accordion pill: Enhancement of riboflavin bioavailability in humans. *J Control Release*. 2006;113:208–215.
- 44. Nashar NN, Donia AA, Mady OY, Maghraby GM. Formulation of clarithromycin floating microspheres for eradication of *Helicobacter pylori*. *J Drug Delivery Sci Tech*. 2017;10:101–106.
- 45. Ninan M, Xu L, Wang Q, Zhang X. Development and evaluation of new sustained-release floating microspheres. *Int J Pharm.* 2008;358:82–90.
- 46. Jain A, Pandey V, Ganeshpurkar A, Dubey N, Bansal D. Formulation and characterization of floating microballoons of Nizatidine for effective treatment of gastric ulcers in murine model. *Drug Deliv*. 2015;22(3):306–311.
- 47. Strubing, S, Metz H, Mader K. Characterization of poly (vinyl acetate) based floating matrix tablets. *J Control Release*. 2008;126:149–155.
- 48. Yadav A, Jain DK. Gastro-retentive microballoons of metformin: Formulation development and characterization. *J Adv Pharm Technol Res.* 2011;2(1):51–55.
- Sato Y, Kawashima Y, Takeuchi H, Yamamoto H. In vivo evaluation of riboflavin-containing microballoons for controlled drug delivery system in healthy human volunteers. J Control Release. 2003;93:39–47.
- Husseiny RA, Abu Lila, Abdallah MH, Hamed EE, El-Ghamry. Design, in vitro/in vivo evaluation of meclizine HCl-loaded floating microspheres targeting pregnancy related nausea and vomiting. J Drug Delivery Sci Tech. 2018;5:135–142.
- 51. El-Kamel AH, Sokar MS, Al-Gamal SS, Naggar VF. Preparation and evaluation of ketoprofen floating oral delivery system. *Int J Pharm*. 2001;220:13–21.
- 52. Kumaraswamy S, Thangasundaralingam SR, Sekar R, Jayakrishnan A. A floating-type dosage form of repaglinide in polycarbonate microspheres. *J Drug Delivery Sci Tech*. 2017;10:201–213.
- Sato Y, Kawashima Y, Takeuchi H, Yamamoto H. In vitro and in vivo evaluation of riboflavin-containing microballoons for a floating controlled drug delivery system in healthy humans. *Int J Pharm.* 2004;275:97–107.
- 54. Chao Pi, Jiyuan Yuan, Hao Liu, et al. In vitro and in vivo evaluation of curcumin loaded hollow microspheres prepared with ethyl cellulose and citric acid. *Biomac*. 2017;45:17–425.

Polim Med. 2019;49(2):71–79

55. Pi C, Feng T, Liang J, et al. Polymer blends used to develop felodipine loaded hollow microspheres for improved oral bioavailability. *Int J Biol Macromol.* 2018;112:1038–1047.

- Sato Y, Kawashima Y, Takeuchi H, Yamamoto H. Physicochemical properties to determine the buoyancy of hollow microspheres (microballoons) prepared by the emulsion solvent diffusion method. Eur J Pharm Biopharm. 2003;55:297–304.
- Jain SK, Awasthi AM, Jain NK, Agrawal GP. Calcium silicate based microspheres of repaglinide for gastro-retentive floating drug delivery: Preparation and in vitro characterization. *J Control Release*. 2005;107:300–309.
- Kawashima Y, Niwa T, Takeuchi H, Hino T, Itoh Y. Hollow microspheres for use as a floating controlled drug delivery system in the stomach. J Pharm Sci. 1992;81:135–140.
- Patra CN, Priya R, Swain S, et al. Pharmaceutical significance of Eudragit: A review. Future J Pharm Sci. 2017;2:789–796.
- 60. Piao H, Liu S. Development of an osmotically-driven pellet coated with acrylic copolymers (Eudragit* RS 30D) for the sustained release of oxymatrine, a freely water soluble drug used to treat stress ulcers (I): In vitro and in vivo evaluation in rabbits. *Drug Dev Ind Pharm.* 2013;39:1230–1237.
- Sahoo SK, Dhal S, Mohapatro P, Behera BC, Barik BB. Effect of processing temperature on Eudragit RS PO microsphere characteristics in the solvent evaporation process. *Pharmazie*. 2007;62:638–639.
- Kibria G, Roni MA, Absar MS, Jalil RU. Effect of plasticizer on release kinetics of diclofenac sodium pellets coated with Eudragit RS30D. AAPS Pharm Sci Tech. 2008;9:1240–1246.
- 63. Boza A, Caraballo I, Alvarez JF, Rabasco AM. Evaluation of Eudragit RS-PO and Ethocel 100 matrices for the controlled release of lobenzarit disodium. *Drug Dev Ind Pharm*. 1999;25:229–233.
- Kibria G, Islam KM, Jalil RU. Stability study of ambroxol hydrochloride sustained release pellets coated with acrylic polymer. Pak J Pharm Sci. 2009;22:36–43.
- 65. Mathur V, Nagpal K, Singh SK, Mishra DN. Comparative release profile of sustained release matrix tablets of verapamil HCl. *Int J Pharm Investig.* 2013;3:60–65.
- Krejcová K, Rabisková M, Vetchý D, Tomásek V, Prokopová A. The
 effect of polymeric dispersion type on the release of diclofenac
 sodium from coated pellets. Ceska Slov Farm. 2007;56:190–199.
- Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS Pharm Sci Tech. 2013;14:782–793.
- Roni MA, Kibria G, Jalil RF. Formulation and in vitro evaluation of alfuzosin extended release tablets using directly compressible eudragit. *Indian J Pharm Sci.* 2009;71:252–258.
- Gupta NV, Natasha S, Getyala A, Bhat RS. Bioadhesive vaginal tablets containing spray dried microspheres loaded with clotrimazole for treatment of vaginal candidiasis. Acta Pharm. 2013;63:359–372.
- Rey H, Wagner KG, Wehrlé P, Schmidt PC. Development of matrixbased theophylline sustained-release microtablets. *Drug Dev Ind Pharm.* 2000;26:21–26.
- Zhang W, Li X, Ye T, et al. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. *Int J Nanomed*. 2014;9:4305–4315.
- Kibria G, Islam KM, Jalil RU. Stability study of ambroxol hydrochloride sustained release pellets coated with acrylic polymer. Pak J Pharm Sci. 2009;22:36–43.
- Antoine A, Hélène, H. Colonic delivery using zn/pectin beads with a eudragit coating. US Patent: 20080124279. 2008.
- Shojaei AH, Melissa EC. Modified release tablet formulations with enhanced mechanical properties. US Patent: 20070104782. 2007.
- David C, Rong-jen T, Hue-in L. Improved stabilization of misoprostol. European Patent: 0896823. 2002.
- Choy J, Choi GE, Park MC. Ursodeoxycholic acid-synthetic hydrotalcite Eudragit hybrid, pharmaceutical composition containing the same and method for preparing the same.US Patent: 20120156263. 2012.
- 77. Isa O. Oral drug delivery formulations. US Patent: 20150250733. 2015;September 10.
- 78. Jorge PH. Coated senna extract granules. WO/2011/014976. 2011; October 02.