Polymers in Medicine

Polim. Med.
Index Copernicus (ICV 2021) – 120.65
MNiSW – 70
Average rejection rate – 27.13%
ISSN 0370-0747 (print)
ISSN 2451-2699 (online) 
Periodicity – biannual

Download original text (EN)

Polymers in Medicine

Ahead of print

doi: 10.17219/pim/153521

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Patani BO, Akin-Ajani OD, Kumaran A, Odeku OA. Irvingia gabonensis (O’Rorke) Bail polymer matrix system for controlled drug delivery [published online as ahead of print on October 19, 2022]. Polim Med. 2022. doi:10.17219/pim/153521

Irvingia gabonensis (O’Rorke) Bail polymer matrix system for controlled drug delivery

Bernard O. Patani1,B,C,F, Olufunke Dorothy Akin-Ajani1,C,D,F, Arul Kumaran2,B,C,F, Oluwatoyin Adepeju Odeku1,A,C,D,E,F

1 Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Nigeria

2 KTN College of Pharmacy, Kerala, India

Abstract

Background. Irvingia gabonensis kernel polymer has gained attention in drug delivery systems because of its compatibility and degradation under natural and physiological conditions.

Objectives. This study aimed to evaluate Irvingia gabonensis polymer as a matrix system for the controlled delivery of ibuprofen in comparison to xanthan gum and hydroxypropylmethylcellulose (HPMC).

Materials and methods. Irvingia gabonensis polymer was extracted using established methods and dried using the oven- and freeze-drying methods. Ibuprofen tablets were prepared by direct compression and the effects of polymer concentration (10–50%), excipients (lactose, microcrystalline cellulose and dicalcium phosphate dihydrate) and polymers (xanthan gum and HPMC) on the mechanical and drug release properties of the tablets were evaluated. Density measurements and the Heckel and Kawakita equations were used to determine the compression properties of the tablets. Friability, crushing strength and the crushing strength–friability ratio (CSFR) were used to evaluate the mechanical properties of the tablets, while dissolution times were used to evaluate drug release from the matrices. The drug release mechanisms were determined by fitting the dissolution data into classic kinetic equations.

Results. Irvingia gabonensis polymer deformed plastically with a fast onset and a high amount of plastic deformation compared with xanthan gum and HPMC. This polymer was directly compressible and formed intact non-disintegrating tablets; the mechanical and dissolution properties of Irvingia gabonensis polymer tablets generally decreased with increasing concentration of ibuprofen. The ranking of dissolution times was xanthan gum > freeze-dried Irvingia gabonensis > HPMC > oven-dried Irvingia gabonensis. The addition of the excipients improved the mechanical properties of the tablets, aided ibuprofen release, and altered the release kinetics, which was largely defined by the Korsmeyer–Peppas model. Increasing the proportion of xanthan gum and HPMC in the matrices resulted in a decreased amount of ibuprofen released after 9 h, with xanthan gum having a greater effect.

Conclusions. Irvingia gabonensis polymer matrices may be effective in the preparation of controlled release tablets, and their right combination with xanthan gum or HPMC could provide a time-independent release for longer durations.

Key words: polymer, tablet, compression properties, Irvingia gabonensis, controlled release

 

Introduction

Plant polymers have sparked a lot of interest as excipients in recent years due to their abundance, good biocompatibility, non-toxicity and, in some circumstances, superior drug release properties compared with synthetic polymers.1 Because of their natural origins, they are appealing and suitable alternatives to the pharmaceutical excipients. There will always be a need to develop new excipients to meet drug formulation-specific requirements and to provide more effective and less expensive alternatives to conventional excipients. Hydrophilic polymers have been widely used as a directly compressible polymeric matrix for controlled and targeted drug delivery of pharmaceutical formulations. The direct compression method is an economical method for the preparation of matrix tablets due to its simple manufacturing process compared to other controlled release systems.2, 3 Owing to their hydrophilic properties, a variety of natural and modified polymers, including xanthan gum, alginates, guar gum, carrageenan, karaya gum, and khaya gum,1, 2, 4, 5, 6 have been successfully used in the preparation of oral controlled release matrix tablets. A few of these polymer matrices are very effective in offering zero-order time-independent drug release kinetics and, in some cases, they have outperformed established polymers.

The seeds of Irvingia gabonensis (O’Rorke) Bail (Irving­iaceae family), also known as African bush mango or wild mango, has recently gained much interest. Irvingia gabonensis seed contains lipids and polymeric substances; the lipids from its seed are useful as a suppository base,7 tabletting lubricant8 and sustained release agent9; additionally, the mucilage has been used as emulsifying and suspending agent,10 polymer for microbead formulations11 and tablet binder.4 When Irvingia gabonensis was used as a binding agent in metronidazole tablets, they possessed lower mechanical strength and slower drug release properties than standard gelatin binder.4 Recent studies have reported the material and compression properties of Irvingia gabonensis kernel polymer.12 The results showed that this polymer was directly compressible and formed intact non-disintegrating tablets with acceptable crushing strength and friability, comparable with standard polymers.12 Irvingia gabonensis kernel polymer provided controlled release of model drugs when used as binding agent in metronidazole tablets and polymer for the formulation of microbeads, indicating its utility as a controlled release polymer.4, 11 However, the suitability of Irvingia gabonensis polymer as a directly compressible excipient for the formulation of controlled release matrix tablets has not been investigated.

Thus, in the present study, Irvingia gabonensis polymer was evaluated as a directly compressible controlled release excipient in ibuprofen matrix tablets in comparison with xanthan gum and hydroxypropylmethylcellulose (HPMC). The tablet properties and drug release from the matrices were studied, as well as the effects of drug concentration, excipient, polymer type, and polymer concentration on the release kinetics of the matrix formulations. Drug release mechanisms were also investigated to determine the effects of formulation excipients and other parameters on the drug release characteristics of matrix tablets.

Materials and methods

Materials

The materials used in the study included: ibuprofen (BASF AG, Ludwigshafen, Germany), microcrystalline cellulose (MCC; Person Pharmaceuticals Ltd., Backinghenshire, UK), dibasic calcium phosphate anhydrous, dihydrate, dicalcium phosphate (DCP) dihydrate (BDH Chemicals Ltd., Poole, UK), directly compressible lactose (BDH Chemicals Ltd.), xanthan gum (Myprotein Co., Manchester, UK), hydroxypropylmethylcellulose (Ranbaxy Laboratories Ltd., Gurgaon, India), and Irvingia gabonensis mucilage (from Irvingia gabonensis kernel (dika nut), bought on the local market at Okolobiri, Nigeria). The procedure for the extraction of the polymer has been reported elsewhere.4, 12

Preparation of matrix tablets
by direct compression

Ibuprofen–polymer matrix tablets were prepared to contain different concentrations (10% w/w, 20% w/w, 30% w/w, and 50% w/w) of ibuprofen. The drug–polymer blend was mixed in a mixer (VSF 3843C; Forster Equipment Co. Ltd., Leicester, UK) for 10 min. Tablets (500 ±10 mg) were compressed for 30 s at different predetermined loads in a 10.5 mm die, in combination with flat-faced upper and lower punches, using a Carver hydraulic hand press (Model C; Carver Inc., Menomonee Falls, USA). Before compression, the die and flat-faced punches were lubricated with a 1% w/v dispersion of magnesium stearate in acetone. The tablets were then stored in an airtight container over silica gel for 24 h to allow elastic recovery and hardening to occur. Their weight and dimensions were determined, and the relative density of the tablets was calculated.13

The effects of excipient (microcrystalline cellulose, lactose and dicalcium phosphate) and polymers (xanthan gum and HPMC) and drug:Irvingia gabonensis:polymer ratio (1:3:1, 2:7:1, 2:6:2, 2:5:3, 2:4:4, and 2:0:8) were also evaluated.

Compression properties

The compression properties of the polymers were analyzed using Heckel and Kawakita equations.14, 15, 16, 17, 18 The Heckel equation is used to compute the relationship between the relative density of the powder bed during compression (D) and the applied pressure (P), which is expressed as:

ln [1/(1 − D)] = K P + A, (1)

where K is the slope of the linear part, which is inversely proportional to the material’s mean yield pressure (Py); and ln means natural logarithm. The intercept (A) was used to compute the relative density DA using19:

DA = 1 − e−A (2)

The relative density DB, which characterizes the phase of rearrangement at low pressures, may be calculated using:

DB = DA – D0 (3)

The degree of volume reduction (C) in the Kawakita linear model17 is expressed as:

C = (Vo − Vp)/Vo = a b P/(1 + b P), (4)

where Vo is the initial bulk volume and Vp is the bulk volume after compression. Equation 5 can be rewritten as:

P/C = P/a + 1/ab (5)

The constant a defines the minimum porosity of the material before compression, whereas b represents its plasticity. The pressure term Pk is obtained by taking the reciprocal of b.20

Tablet properties

Tablet crushing strength (CS) was determined with a DBK tablet hardness tester (model EHO1; DBK Itruments, Mumbai, India), while the tablet friability (F) was determined with a Thermonik Friability Apparatus (model C-FTA 20; Campbell Electronics, Mumbai, India) for 4 min at 25 rpm (100 revolutions). All tests were done in triplicate.

Disintegration test

The disintegration times of the matrices were determined with a disintegration tester model T-TD20 (Campbell
Electronics) in distilled water at 37 ±0.5°C.

In vitro dissolution studies

The dissolution test was performed using the USP XXIII basket method (model T.DR-6; Kshitij Innovations, Ambala, India), with 900 mL media maintained at 37 ±0.5°C rotated at 50 rpm. To mimic the GI condition, the media contained 0.1 M hydrochloric acid (pH 1.2) for the first 2 h and Sorensen’s phosphate buffer (pH 7.4) for the rest of the experiment. Samples (5 mL) were withdrawn at fixed intervals and replaced with fresh media to maintain a sink condition. The sample was diluted and ibuprofen release was measured using a ultraviolet (UV) spectrophotometer at 222 nm (UV-Visible Spectrophotometer model U.V. Pharmaspec 1700E, 23 OCE; Shimadzu Corp., Kyoto, Japan). All tests were performed in triplicate.

Drug release kinetics

The in vitro drug release data were fitted to zero-order,21, 22, 23 first-order,22, 23 Higuchi,24 Hixson–Crowell,25, 26 and Korsmeyer–Peppas27 kinetic equations in order to study the mechanism(s) of drug release.

The zero-order equation is as follows21, 22, 23:

Q = Q0 + k0t, (6)

where Q is the amount of drug release at time t; k0 is the apparent dissolution rate constant or zero-order release constant; and Q0 is the initial concentration of the drug in the solution resulting from a burst effect.

The first-order equation is as follows22, 23:

ln Q = ln Q0 + k1t, (7)

where k1 is the first order release constant.

The Higuchi equation is as follows24:

Q = kH t1/2, (8)

where kH is the Higuchi release constant.

The Hixson–Crowell equation is as follows25, 26:

Qo1/3 – Q1/3 = kst, (9)

where ks is the constant incorporating the surface/volume ratio.

The Korsmeyer–Peppas equation is as follows27:

Qt/Q = kktn, (10)

where kk is the release rate constant which considers the structural and geometric characteristics of the tablet; and n is the diffusional exponent or release exponent, indicative of the drug release mechanism. A value of n = 0.5 indicates Fickian Diffusion (Higuchi Matrix), 0.5 < n < 1.0 indicates anomalous (non-Fickian) diffusion, n = 1.0 indicates case II transport (zero-order release), and n > 1.0 indicates super case II transport.27

Comparing the correlation coefficient values enabled the identification of the best fit model(s).

Statistical analyses

To compare the effects of the drug concentration, excipients and polymers on the mechanical and drug release properties of the tablets, the analysis of variance (ANOVA) was performed using GraphPad Prism v. 4.0 software (GraphPad Software Inc., San Diego, USA). The Tukey–Kramer multiple comparison post-test was used and p ≤ 0.05 was considered significant.

Results and discussion

Compression properties
of ibuprofen matrix tablets

Representative Heckel plots for matrix tablets containing 20% w/w ibuprofen prepared through direct compression are shown in Figure 1. The Heckel plots generally exhibited 2 regions or 2 phases of compression for formulations containing Irvingia gabonensis polymer.28 The mean yield pressure (Py) was calculated from the regions of the plots showing the highest correlation coefficient for linearity, with R ≥ 0.990, generally from 84.82 MPa to 169.69 MPa. Formulations containing HPMC and xanthan gum displayed R ≥ 0.990 at all compression pressures, indicating that the formulations deformed mainly by plastic flow. Representative Kawakita plots for the matrix tablets containing 20% w/w ibuprofen are presented in Figure 2 and demonstrate a linear correlation at all compression pressures with R2 > 0.999. The parameters derived from density measurements and the Heckel and Kawakita plots are presented in Table 1.

It was found that the values of D0 and DI decreased with increasing concentration of ibuprofen. The rankings for D0 and DI were found to be xanthan gum > Irvingia gabonensis > HPMC. There was no significant difference between the density values for freeze-dried and oven-dried Irvingia gabonensis gum, indicating a comparable packing behavior.

In contrast, DA and DB increased as the ibuprofen concentration in the formulations increased. The rankings of DA and DB were found to be freeze-dried Irvingia gabonensis > oven-dried Irvingia gabonensis > HPMC > xanthan gum. There was no significant difference between the densification behaviors of the Irvingia gabonensis mucilage prepared employing both drying methods.

The Pk and Py are pressure parameters that are inverse measures of plasticity.29 The Py relates mainly to the onset of plastic deformation, while Pk relates to the amount of plastic deformation occurring during the compression process.13, 16 The Py values of the formulations increased with an increase in the concentration of ibuprofen whereas Pk generally decreased. This suggested that ibuprofen delayed the onset of plastic deformation but increased the total amount of plastic deformation. Materials that are brittle or easily fragmenting are known to have high Py values, while those that deform plastically or elastically typically exhibit low yield pressure.29, 30, 31 Thus, the addition of a non-polymeric material, such as ibuprofen, reduced the plasticity of the materials but increased the total amount of plastic deformation.29 The rankings for the Py values for the formulations were found to be HPMC > xanthan gum > oven-dried Irvingia gabonensis > freeze-dried Irvingia gabonensis, while the ranking for Pk was found to be xanthan gum > oven-dried Irvingia gabonensis > freeze-dried Irvingia gabonensis > HPMC. Thus, formulations containing Irvingia gabonensis polymer exhibited a faster onset of plastic deformation than HPMC and xanthan gum, and higher amounts of plastic deformation than xanthan gum, but lower deformation than HPMC. Formulations containing HPMC exhibited the slowest onset of plastic deformation while xanthan exhibited the highest amount. High plastic deformation has been related to tablets with high crushing strength and a greater ability to withstand rigorous handling.28

Effect of drug concentration

The mechanical and drug release properties of the ibuprofen matrices are shown in Table 2. It was found that the crushing strength of the matrix tablets decreased with increasing concentration of ibuprofen in the matrix tablets, while the friability increased. The ranking of the crushing strength was found to be HPMC > xanthan gum > freeze-dried > oven-dried Irvingia gabonensis; in contrast, the ranking was reversed for friability. Studies have shown that crushing strength assesses the strength of the tablet while friability tests assess the weakness of the tablet; the greater the crushing strength–friability ratio (CSFR), the stronger the tablet.1, 13, 29 It was determined that tablet crushing strength decreased with an increase in drug concentration, with the following ranks: HPMC > xanthan gum > oven-dried Irvingia gabonensis > freeze-dried Irvingia gabonensis. Polymers are known to undergo plastic deformation, resulting in increased solid bond formation, which increases the strength of the tablet.32, 33 However, the addition of drugs into the polymer reduces the number of solid bonds within the polymer, causing a decrease in tablet strength and an increase in friability. There were statistically significant differences (p < 0.05) in the crushing strength, CSFR and friability values for all the polymers. Freeze-dried Irvingia gabonensis kernel produced tablets with significantly higher (p < 0.05) crushing strength and CSFR, and lower friability values than oven-dried Irvingia gabonensis kernel polymer.

The drug release profiles of ibuprofen tablets containing different drug concentrations are shown in Figure 3, and the time for 25% drug release (t25) is shown in Table 2. It was observed that the dissolution time decreased with an increase in drug concentration in the matrix. The decrease in tablet dissolution times could be attributed to the high concentration of the drug weakening the matrix lattice, which provides a diffusion pathway for matrix erosion/disintegration.34 The ranking of t25 for the formulation was xanthan gum > HPMC > freeze-dried Irvingia gabonensis > oven-dried Irvingia gabonensis. Thus, the formulation containing Irvingia gabonensis polymer exhibited a faster dissolution rate, while xanthan gum showed the slowest dissolution rate.

Drug release kinetics from dosage forms are critical in improving the frequency of administration, bioavailability, patient acceptability, and, in many cases, the occurrence of harmful or toxic consequences.35 The correlation coefficients obtained from the kinetic equations indicating the best fit for each of the models are presented in Table 3. The diffusional exponent or release exponent (n), obtained from the Korsmeyer–Peppas equation, is indicative of the drug release mechanism.27 The drug release parameters derived from the Korsmeyer–Peppas equation for the matrices showed super case II drug release kinetics with n > 1.0. This indicates that drug release from these formulations is controlled by more than one process, usually a combination of diffusion and erosion mechanisms. Drug release from hydrophilic matrices, such as HPMC, has been attributed to the formation of a strong viscous gel when the polymer hydrates in contact with water.32, 36

Effect of excipients

Directly compressible excipients have been used to change the size of drug tablets and to enhance their mechanical characteristics and compression.37 Although the mechanical properties of ibuprofen tablets prepared with Irvingia gabonensis mucilage were acceptable, the tablets became more friable (friability > 1%) as the drug concentration increased.38 Therefore, 3 direct compressible excipients, namely MCC, lactose and dicalcium phosphate (DCP), were added to the matrix tablet formulation in the drug–polymer–excipient at a ratio of 1:3:1. It was found that the mechanical and drug release properties of the tablets (Table 4) with added excipients were significantly (p < 0.001) higher than those without added excipients. The crushing strength and CSFR of the formulations increased, while the friability decreased upon addition of the excipients. There was a significant difference (p < 0.001) in the crushing strength, friability and CSFR of matrix tablets that contained the excipients and of those containing the binary mixtures of ibuprofen–polymer. The ranking of the excipient effect on the crushing strength and CSFR was found to be DCP > lactose > MCC. The ranking was reversed for friability. Comparing all of the polymers, the ranking of excipient effect on crushing strength and CSFR was HPMC > xanthan gum > freeze-dried Irvingia gabonensis > oven-dried Irvingia gabonensis polymer, and it was reversed for friability. Generally, the matrix tablets containing the 3 different excipients had friability values <1%, and thus had enhanced ability to withstand the rigours involved in transport and handling of the formulations.

The addition of the excipients in the matrix tablet formulations facilitated the release of ibuprofen from the tablets. Lactose and MCC had lower t25 values than DCP, although there was no significant difference (p > 0.05) in the dissolution time (t25 and t50 – time for 25% and 50 % drug release, respectively) in both oven- and freeze-dried Irvingia gabonensis kernel matrices. Lactose is  a water-soluble excipient that dissolves upon contact with the dissolution media creating a diffusion pathway for the release of the drug. On the other hand, MCC, though water-insoluble, may have largely acted through its disintegrant property, which could facilitate the breakup of the matrix tablet. Collectively, these properties of MCC could increase the dissolution rate and thus cause a faster release of the drug.32

Unlike Irvingia gabonensis kernel polymer, xanthan gum and HPMC standard polymers containing the excipients facilitated a slower release of ibuprofen, as shown by the higher dissolution times. The t25 values of xanthan gum and HPMC matrices that contained the excipients were significantly (p < 0.001) higher than the values for Irvingia gabonensis kernel matrices with the 3 excipients. Hydrophilic polymers such as HPMC have been shown to facilitate prolonged drug release from matrix tablets due to the formation of a strong viscous gel when the polymer hydrates come into contact with an aqueous medium.1, 39

The correlation coefficients from the different dissolution kinetic equations used to determine the drug release kinetics are presented in Table 5. The results showed that drug release from matrix tablets followed the first-order and Korsmeyer kinetic models. The mechanism of drug release depended on the type of polymer and excipient used in the formulation. There appeared to be an interaction between the polymer and excipients, which affected the rate of drug release from the matrix tablets.1 The value of release parameters (n) derived from the Korsmeyer kinetics model depended on the excipient. Formulations containing MCC showed the highest values and DCP the lowest. The release mechanism was generally non-Fickian super case II transport for Irvingia gabonensis matrix tablets with n values greater than 1. On the other hand, the release from xanthan gum and HPMC matrices was found to be anomalous (non-Fickian) diffusion. This non-Fickian release mechanism implies that drug release is controlled by diffusion or a combination of diffusion and macromolecular chain relaxation mechanisms. The above indicates that the nature and type of excipients appeared not to alter the release mechanism of formulations.

Effect of polymers

One method for achieving controlled time-independent release is to use a polymer mixture to achieve sustained release over the desired time. If the 2 polymers are carefully chosen and used in appropriate quantities, it should be possible to create a polymer system with a time-independent release.1, 40 The mechanical and drug release properties of ibuprofen tablets prepared with a polymer mixture of Irvin­gia gabonensis kernel polymer and standard polymers, xanthan gum and HPMC are shown in Table 6. The results showed that tablets prepared with the drug:Irvingia gabonensis:polymer ratio of 2:7:1 exhibited significantly higher (p < 0.05) mechanical strength than those containing higher concentrations of the standard polymers. Formulations containing HPMC showed higher mechanical strength than those containing xanthan gum. The amount of ibuprofen released after 9 h ranged from 55.34% w/w to 68.96% w/w. Formulations containing HPMC generally showed a slower drug release. There was no significant (p > 0.05) difference in the drug release properties of the formulations.

The parameters obtained from the different drug release kinetic equations (Table 7) showed that the release kinetics from the oven-dried Irvingia gabonensis kernel polymer with xanthan gum and HPMC generally followed the first-order release kinetics, whereas the release of ibuprofen from freeze-dried Irvingia gabonensis kernel polymer matrices containing HPMC and xanthan gum followed the Hixson–Crowell model. The release parameters (n) derived from the Korsmeyer kinetics model indicated that the drug release from the matrix was super case II, suggesting time-independent release kinetics. Thus, the release kinetics of ibuprofen from the matrix tablets prepared with polymer blends appeared independent of the type and concentration of the standard polymer in the polymer blend.

Conclusions

Our results suggest that Irvingia gabonensis polymer is suitable as a directly compressible excipient for the formulation of ibuprofen tablets, comparable to xanthan gum and HPMC. Increasing ibuprofen concentration generally decreased the mechanical and dissolution properties of drug tablets. Inclusion of excipients improved tablet mechanical properties, aided ibuprofen release and altered the release kinetics, which was largely defined by the Korsmeyer–Peppas model. Increasing the proportion of xanthan gum and HPMC in the matrices resulted in a decreased amount of ibuprofen released after 9 h, with xanthan gum having the greatest effect. Irvingia gabonensis polymer could be effective for the preparation of controlled release tablets, and the right combination with xanthan gum or HPMC could provide a time-independent release for longer durations.

Reference

Tables


Table 1. Parameters derived from Heckel and Kawakita plots of ibuprofen matrix tablets

Polymer

Concentration of ibuprofen

Heckel plot

Kawakita plot

D0 [g/cm3]

Py [MPa]

DA [g/cm3]

DB [g/cm3]

PK [MPa]

DI [g/cm3]

Oven-dried Irvingia gabonensis

10

0.229

333.33

0.820

0.591

1.638

0.427

20

0.223

384.62

0.860

0.637

1.376

0.412

30

0.214

454.55

0.883

0.669

0.799

0.372

50

0.206

509.09

0.903

0.697

0.254

0.323

Freeze-dried Irvingia gabonensis

10

0.234

250.00

0.832

0.598

1.325

0.392

20

0.218

263.16

0.872

0.654

1.152

0.363

30

0.214

333.33

0.890

0.676

1.133

0.350

50

0.210

500.00

0.905

0.695

1.047

0.337

Xanthan
gum

10

0.254

454.55

0.774

0.520

3.266

0.432

20

0.247

526.32

0.794

0.547

1.808

0.386

30

0.243

526.32

0.898

0.655

1.299

0.373

50

0.237

555.56

0.905

0.668

1.299

0.366

HPMC

10

0.202

370.37

0.801

0.599

0.334

0.293

20

0.199

400.00

0.809

0.610

0.439

0.285

30

0.197

625.00

0.838

0.641

0.399

0.279

50

0.194

666.67

0.840

0.646

0.460

0.270

Do – relative density at loose packing; Py – yield pressure; DA – relative density at zero or low pressure; DB – relative density at rearrangement phase at low pressures; Pk – pressure required to reduce the powder bed by 50%; DI – packed initial relative density; HMPC – hydroxymethylpropylcellulose.
Table 2. Effect of drug concentration on the mechanical and drug release properties of ibuprofen matrix tablets

Polymer

Ibuprofen concentration [% w/w]

Crushing strength [N]

Friability [%]

CSFR

t25 [h]

Oven-dried Irvingia gabonensis

10

15.33 ±0.15

0.87 ±0.00

17.62

3.25

20

10.00 ±0.26

0.94 ±0.03

10.64

2.30

30

8.67 ±0.35

1.06 ±0.07

8.18

1.90

50

7.33 ±0.25

2.79 ±0.47

2.63

1.05

Freeze-dried Irvingia gabonensis

10

18.33 ±0.46

0.74 ±0.00

24.47

3.60

20

12.00 ±0.36

0.82 ±0.07

14.63

3.40

30

9.00 ±0.10

0.89 ±0.08

10.11

2.70

50

8.67 ±0.31

1.66 ±0.20

5.22

1.95

Xanthan gum

10

73.67 ±0.56

0.20 ±0.00

368.35

5.75

20

55.66 ±0.97

0.34 ±0.03

163.74

4.20

30

52.33 ±0.38

0.35 ±0.33

149.51

3.90

50

47.00 ±0.89

0.42 ±0.42

111.90

3.65

HPMC

10

91.33 ±0.64

0.00 ±0.00

3.70

20

69.68 ±0.25

0.24 ±0.00

290.29

2.70

30

60.00 ±0.40

0.28 ±0.15

214.29

2.25

50

54.69 ±0.42

0.34 ±0.07

160.79

1.80

CSFR – crushing strength–friability ratio; HPMC – hydroxymethylpropylcellulose; t25 – time for 25% drug release.
Table 3. Drug release parameters for ibuprofen matrix tablets obtained from different release models

Polymer

Ibuprofen

concentration

(% w/w)

Zero-order

First-order

Higuchi

Hixson–Crowell

Korsemeyer

ko(h−1)

R2

k

R2

kh

R2

k

R2

k

R2

n

Oven-dried Irvingia gabonensis

10

3.74

0.685

0.05

0.855

22.17

0.842

1.33

0.850

0.53

0.882*

1.28

20

3.69

0.722

0.06

0.947*

21.74

0.877

1.16

0.862

0.44

0.882

1.41

30

3.75

0.719

0.08

0.972*

22.14

0.876

1.16

0.868

0.43

0.891

1.43

50

2.94

0.680

0.03

0.764

17.66

0.858

1.03

0.913

0.40

0.939*

1.42

Freeze-dried Irvingia gabonensis

10

3.77

0.688

0.04

0.822

22.17

0.833

1.38

0.841

0.57

0.880*

1.21

20

3.83

0.705

0.05

0.875

22.58

0.853

1.36

0.856

0.56

0.890*

1.25

30

3.83

0.711

0.05

0.900

22.67

0.870

1.34

0.889

0.54

0.920*

1.30

50

3.01

0.631

0.03

0.662

18.38

0.823

1.18

0.906

0.48

0.934*

1.32

Xanthan gum

10

2.06

0.843

0.03

0.898

11.81

0.957

1.22

0.968

0.67

0.980*

0.86

20

1.93

0.712

0.01

0.778

11.78

0.910

1.16

0.972*

0.59

0.956

1.03

30

1.96

0.679

0.01

0.740

12.09

0.889

1.12

0.968*

0.56

0.951

1.10

50

1.69

0.690

0.01

0.751

10.38

0.900

0.99

0.968*

0.49

0.937

1.12

HPMC

10

1.91

0.670

0.01

0.713

11.73

0.867

1.01

0.939

0.47

0.952*

1.16

20

1.90

0.466

0.01

0.512

12.79

0.729

1.10

0.891

0.49

0.891*

1.25

30

1.92

0.461

0.01

0.508

13.02

0.725

1.10

0.895

0.48

0.895*

1.28

50

1.55

0.439

0.01

0.477

10.70

0.717

0.10

0.916*

0.47

0.905

1.26

* drug release kinetics with the highest correlation coefficient; HPMC – hydroxymethylpropylcellulose; k0 – the apparent dissolution rate constant or zero-order release constant; kH – Higuchi constant.
Table 4. Effect of excipient on the mechanical and drug release properties of ibuprofen matrix tablets

Polymer

Composition (drug:polymer:excipient)

Crushing strength [N]

Friability [%]

CSFR

t25 [h]

t50 [h]

Oven-dried Irvingia gabonensis

MCC

41.00 ±0.46

0.40 ±0.05

102.50

0.50

2.20

lactose

45.00 ±0.75

0.36 ±0.04

125.00

0.55

2.40

DCP

51.67 ±0.80

0.35 ±0.03

147.62

0.85

2.80

Freeze-dried Irvingia gabonensis

MCC

44.00 ±0.43

0.38 ±0.03

115.79

0.70

3.15

lactose

53.00 ±0.66

0.32 ±0.04

165.63

0.70

3.30

DCP

63.33 ±0.32

0.27 ±0.02

234.57

2.20

3.50

Xanthan gum

MCC

73.06 ±0.78

0.21 ±0.14

347.62

4.75

5.67

lactose

78.00 ±0.26

0.18 ±0.02

433.33

4.70

5.67

DCP

83.67 ±0.40

0.14 ±0.06

597.62

4.80

5.85

HPMC

MCC

87.33 ±0.85

0.13 ±0.04

671.77

4.30

5.65

lactose

90.20 ±0.76

0.09 ±0.00

1003.67

4.20

5.75

DCP

98.67 ±0.31

0.00 ±0.00

98.67

4.65

5.85

HPMC – hydroxymethylpropylcellulose; CSFR – crushing strength–friability ratio; MCC – microcrystalline cellulose; DCP – dicalcium phosphate; t25 – time for 25% drug release; t50 – time for 50% drug release.
Table 5. Drug release parameters of ibuprofen matrix tablets containing different tablet excipients obtained from different release kinetic models

Polymer

Composition (drug:polymer:excipient)

Zero-order

First-order

Higuchi

Hixson–Crowell

Korsmeyer

ko(h−1)

R2

k

R2

kh

R2

k

R2

k

R2

n

Oven-dried Irvingia gabonensis

MCC

3.37

0.785

0.08

0.982

22.37

0.950

1.36

0.988

0.49

0.988*

1.49

lactose

3.47

0.688

0.08

0.946

22.64

0.887

1.36

0.962*

0.49

0.949

1.48

DCP

3.40

0.698

0.08

0.929

23.20

0.888

1.55

0.954*

0.58

0.946

1.34

Freeze-dried Irvingia gabonensis

MCC

2.77

0.608

0.09

0.941*

17.34

0.828

0.82

0.923

0.26

0.890

1.72

lactose

3.66

0.652

0.11

0.973*

23.61

0.860

1.34

0.938

0.46

0.915

1.52

DCP

3.44

0.519

0.95

0.958*

22.09

0.748

1.19

0.861

0.40

0.851

1.58

Xanthan gum

MCC

4.45

0.664

0.06

0.911*

27.93

0.810

2.45

0.872

1.22

0.908

0.60

lactose

4.69

0.614

0.07

0.843*

29.50

0.754

2.51

0.779

1.22

0.813

0.56

DCP

4.58

0.588

0.06

0.739

29.01

0.733

2.49

0.782

1.22

0.827*

0.57

HPMC

MCC

4.49

0.625

0.07

0.831

28.46

0.779

2.37

0.877

1.14

0.916*

0.71

lactose

4.45

0.623

0.08

0.874

28.52

0.793

2.25

0.883

1.01

0.913*

0.86

DCP

4.54

0.597

0.06

0.756

28.89

0.749

2.38

0.820

1.12

0.864*

0.78

* drug release kinetics with the highest correlation coefficient; MCC – microcrystalline cellulose; DCP – dicalcium phosphate; k0 – the apparent dissolution rate constant or zero-order release constant; kH – Higuchi constant.
Table 6. Effect of polymer on the mechanical and drug release properties of ibuprofen matrix tablets

Polymer

Irvingia gabonensis polymer

Composition (drug:Irvingia gabonensis: polymer)

Crushing strength [N]

Friability [%]

CSFR

t25 [h]

t50 [h]

% of drug released after 9 h

HPMC

oven-dried Irvingia gabonensis

2:7:1

25.00 ±0.40

0.88 ±0.18

28.41

1.18

4.0

68.96

2:6:2

14.00 ±0.60

4.67 ±0.11

3.00

1.20

4.4

66.16

2:5:3

12.00 ±0.80

4.85 ±0.18

2.47

1.33

6.1

64.95

2:4:4

17.50 ±1.66

1.95 ±0.10

8.97

1.38

6.6

60.93

freeze-dried Irvingia gabonensis

2:7:1

26.33 ±0.21

0.83 ±0.03

31.73

1.10

4.2

67.99

2:6:2

19.67 ±0.97

1.97 ±0.24

9.98

1.30

5.5

66.04

2:5:3

17.33±0.70

2.19 ±0.25

7.91

1.40

6.4

61.91

2:4:4

18.67 ±0.31

2.03 ±0.04

9.20

1.55

7.3

58.38

Xanthan gum

oven-dried Irvingia gabonensis

2:7:1

17.00 ±0.36

0.76 ±0.00

22.37

1.30

4.4

66.89

2:6:2

12.33 ±0.50

1.33 ±0.14

9.27

1.50

5.4

64.09

2:5:3

8.00 ±0.35

0.78 ±0.02

10.26

1.70

6.5

58.26

2:4:4

14.67 ±0.31

1.80 ±0.17

8.15

1.80

7.2

56.43

freeze-dried Irvingia gabonensis

2:7:1

18.67 ±0.15

0.27 ±0.07

69.14

1.30

5.3

65.92

2:6:2

13.00 ±0.40

0.56 ±0.00

23.21

1.50

5.7

62.92

2:5:3

10.33 ±0.25

0.43 ±0.01

24.03

1.60

7.0

56.07

2:4:4

15.34 ±0.57

1.04 ±0.03

14.74

1.80

7.8

55.34

CSFR – crushing strength–friability ratio; HPMC – hydroxymethylpropylcellulose; t25 time for 25% drug release; t50 – time for 50% drug release.
Table 7. Drug release parameters of ibuprofen matrix tablets containing hydroxymethylpropylcellulose (HPMC) and xanthan gum obtained from different release kinetic models

Polymer

Irvingia gabonensis polymer

Composition (drug:Irvingia gabonensis: polymer)

Zero-order

First-order

Higuchi

Hixson–Crowell

Korsmeyer

ko(h−1)

R2

k

R2

kh

R2

k

R2

k

R2

n

HPMC

oven-dried Irvingia gabonensis

2:7:1

3.37

0.782

0.05

0.995*

20.01

0.964

1.24

0.993

0.50

0.972

1.37

2:6:2

3.37

0.805

0.05

0.993

19.81

0.974

1.26

0.997*

0.52

0.974

1.34

2:5:3

3.40

0.824

0.05

0.993*

19.80

0.976

1.30

0.990

0.55

0.963

1.29

2:4:4

3.37

0.850

0.05

0.986*

19.34

0.978

1.33

0.977

0.59

0.928

1.24

freeze-dried Irvingia gabonensis

2:7:1

3.09

0.738

0.04

0.963

18.70

0.943

1.25

0.981*

0.53

0.936

1.34

2:6:2

3.14

0.759

0.04

0.967

18.81

0.952

1.29

0.988*

0.56

0.951

1.29

2:5:3

3.12

0.799

0.03

0.964

18.31

0.959

1.28

0.983*

0.56

0.958

1.25

2:4:4

3.15

0.852

0.03

0.987

18.06

0.981

1.31

0.982*

0.61

0.944

1.18

Xanthan gum

oven-dried Irvingia gabonensis

2:7:1

3.19

0.763

0.04

0.977

19.08

0.957

1.26

0.996*

0.53

0.993

1.32

2:6:2

3.27

0.803

0.04

0.984

19.19

0.969

1.29

0.991*

0.55

0.974

1.30

2:5:3

3.23

0.850

0.04

0.992*

18.61

0.983

1.27

0.986

0.56

0.975

1.24

2:4:4

3.27

0.859

0.03

0.991*

18.69

0.984

1.39

0.987

0.67

0.961

1.12

freeze-dried Irvingia gabonensis

2:7:1

3.15

0.761

0.04

0.966

18.85

0.954

1.32

0.987*

0.58

0.945

1.27

2:6:2

3.25

0.790

0.04

0.970

19.14

0.960

1.38

0.984*

0.62

0.951

1.20

2:5:3

3.21

0.825

0.03

0.980

18.64

0.973

1.40

0.984*

0.66

0.942

1.14

2:4:4

3.25

0.854

0.03

0.986

18.62

0.980

1.45

0.986*

0.71

0.955

1.07

* drug release kinetics with the highest correlation coefficient; k0 – the apparent dissolution rate constant or zero-order release constant; kH – Higuchi constant.

Figures


Fig. 1. Heckel plots matrix tablets containing 20% w/w ibuprofen prepared through direct compression
HPMC – hydroxypropylmethylcellulose; ln – natural logarithm; D – density.
Fig. 2. Kawakita plots for matrix tablets containing 20% w/w ibuprofen prepared through direct compression
HPMC – hydroxypropylmethylcellulose; P/C – pressure/degree of volume reduction.
Fig. 3. Dissolution profiles of ibuprofen matrix tablets containing 20% w/w drug concentration
HPMC – hydroxymethylpropylcellulose.

References (40)

  1. Bamiro OA, Odeku OA, Sinha VR, Kumar R. Terminalia gum as a directly compressible excipient for controlled drug delivery. AAPS PharmSciTech. 2012;13(1):16–23. doi:10.1208/s12249-011-9712-0
  2. Abu Fara D, Dadou SM, Rashid I, et al. A direct compression matrix made from xanthan gum and low molecular weight chitosan designed to improve compressibility in controlled release tablets. Pharmaceutics. 2019;11(11):603. doi:10.3390/pharmaceutics11110603
  3. Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydr Polym. 2022;278:118968. doi:10.1016/j.carbpol.2021.118968
  4. Odeku OA, Patani BO. Evaluation of dika nut mucilage (Irvingia gabonensis) as binding agent in metronidazole tablet formulations. Pharm Dev Technol. 2005;10(3):439–446. doi:10.1081/PDT-54477
  5. Varshosaz J, Tavakoli N, Kheirolahi F. Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride. AAPS PharmSciTech. 2006;7(1):E168–E174. doi:10.1208/pt070124
  6. Patil SH, Talele GS. Natural gum as mucoadhesive controlled release carriers: Evaluation of cefpodoxime proxetil by D-Optimal design tech-nique. Drug Deliv. 2014;21(2):118–129. doi:10.3109/10717544.2013.834416
  7. Akin-Ajani O, Odeku O, Babalola Y. Formulation of paediatric para­cetamol suppositories using shea butter and dika fat as suppository bases. Trop J Nat Prod Res. 2019;3(2):31–36. doi:10.26538/tjnpr/v3i2.2
  8. Onyechi JO, Udeala OK. The tabletting properties of dika fat lubricant. Drug Dev Ind Pharm. 1990;16(7):1203–1216. doi:10.3109/03639049009114937
  9. Ofoefule SI, Chukwu A, Okore VC, Ugwah MO. Use of dika fat in the formulation of sustained release frusemide encapsulated granules. Boll Chim Farm. 1997;136(10):646–650. PMID:9528173.
  10. Isimi CY, Kunle OO, Bangudu AB. Some emulsifying and suspending properties of the mucilage extracted from kernels of Irvingia gabonensis. Boll Chim Farm. 2000;139(5):199–204. PMID:11213437.
  11. Odeku OA, Okunlola A, Lamprecht A. Microbead design for sustained drug release using four natural gums. Int J Biol Macromol. 2013;58:113–120. doi:10.1016/j.ijbiomac.2013.03.049
  12. Patani BO, Akin-Ajani O, Kumaran A, Odeku O. Material and compressional properties of Irvingia gabonensis (O’Rorke) Bail polymers. J Excipients Food Chem. 2022;13(2):64–76. https://jefc.scholasticahq.com/article/36809-material-and-compressional-properties-of-irvingia-gabonensis-o-rorke-bail-polymers. Accessed September 8, 2022.
  13. Odeku OA, Itiola OA. Evaluation of the effects of khaya gum on the mechanical and release properties of paracetamol tablets. Drug Dev Ind Pharm. 2003;29(3):311–320. doi:10.1081/DDC-120018205
  14. Odeku OA, Itiola OA. Characterization of khaya gum as a binder in a paracetamol tablet formulation. Drug Dev Ind Pharm. 2002;28(3):329–337. doi:10.1081/DDC-120002848
  15. Akin-Ajani OD, Itiola OA, Odeku OA. Effect of acid modification on the material and compaction properties of fonio and sweet potato starches. Starch–Stärke. 2014;66(7–8):749–759. doi:10.1002/star.201300280
  16. Sonnergaard JM. A critical evaluation of the Heckel equation. Int J Pharm. 1999;193(1):63–71. doi:10.1016/S0378-5173(99)00319-1
  17. Kawakita K, Lüdde KH. Some considerations on powder compression equations. Powder Technol. 1971;4(2):61–68. doi:10.1016/0032-5910(71)80001-3
  18. Heckel R. Density-pressure relationships in powder compaction. J Trans Metall Soc AIME. 1961;221(4):671–675. https://www.semanticscholar.org/paper/Density-Pressure-Relationships-in-Powder-Compaction-R.-Heckel/25aabf88969b3e566248d843bf6291346a1bb930. Accessed September 8, 2022.
  19. Humbert-Droz P, Gurny R, Mordier D, Doelker E. Densification behaviour of drugs presenting availability problems. J Int J Pharm Tech Prod Mfr. 1983;4:29–35.
  20. Odeku OA, Itiola OA. Evaluation of khaya gum as a binder in a para­cetamol tablet formulation. Pharmacy Pharmacol Commun. 1998;4(4):183–188. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2042-7158.1998.tb00331.x. Accessed September 8, 2022.
  21. Yang L, Fassihi R. Zero-order release kinetics from a self-correcting floatable asymmetric configuration drug delivery system. J Pharm Sci. 1996;85(2):170–173. doi:10.1021/js950250r
  22. Gibaldi M, Feldman S. Establishment of sink conditions in dissolution rate determinations: Theoretical considerations and application to nondisintegrating dosage forms. J Pharm Sci. 1967;56(10):1238–1242. doi:10.1002/jps.2600561005
  23. Wagner JG. Interpretation of percent dissolved-time plots derived from in vitro testing of conventional tablets and capsules. J Pharm Sci. 1969;58(10):1253–1257. doi:10.1002/jps.2600581021
  24. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50(10):874–875. doi:10.1002/jps.2600501018
  25. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23(8):923–931. doi:10.1021/ie50260a018
  26. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133. doi:10.1016/S0928-0987(01)00095-1
  27. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: Effect of entrapped air. J Pharm Sci. 1983;72(10):1189–1191. doi:10.1002/jps.2600721021
  28. Odeku OA. Assessment of Albizia zygia gum as a binding agent in tablet formulations. Acta Pharm. 2005;55(3):263–276. PMID:16375837.
  29. Odeku OA, Fell JT. Effects of the method of preparation on the compression, mechanical, and release properties of khaya gum matrices. Pharm Dev Technol. 2006;11(4):435–441. doi:10.1080/10837450600770544
  30. Ogunjimi AT, Alebiowu G. Neem gum as a binder in a formulated para­cetamol tablet with reference to acacia gum BP. AAPS PharmSciTech. 2014;15(2):500–510. doi:10.1208/s12249-014-0079-x
  31. Doelker E, Shotton E. The effect of some binding agents on the mechanical properties of granules and their compression characteristics. J Pharm Pharmacol. 2011;29(1):193–198. doi:10.1111/j.2042-7158.1977.tb11287.x
  32. Odeku OA, Fell JT. Evaluation of khaya gum as a directly compressible matrix system for controlled release. J Pharm Pharmacol. 2010;56(11):1365–1370. doi:10.1211/0022357044652
  33. Adeoye O, Alebiowu G. Flow, packing and compaction properties of novel coprocessed multifunctional directly compressible excipients prepared from tapioca starch and mannitol. Pharm Dev Technol. 2014;19(8):901–910. doi:10.3109/10837450.2013.840843
  34. Jamzad S, Tutunji L, Fassihi R. Analysis of macromolecular changes and drug release from hydrophilic matrix systems. Int J Pharm. 2005;292(1–2):75–85. doi:10.1016/j.ijpharm.2004.11.011
  35. Huang YT, Tsai TR, Cheng CJ, Cham TM, Lai TF, Chuo WH. Formulation design of an HPMC-based sustained release tablet for pyridostigmine bromide as a highly hygroscopic model drug and its in vivo/in vitro dissolution properties. Drug Dev Ind Pharm. 2007;33(11):1183–1191. doi:10.1080/03639040701377334
  36. Newton AMJ, Lakshmanan P. Effect of HPMC-E15 LV premium polymer on release profile and compression characteristics of chitosan/pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile. Recent Pat Drug Deliv Formul. 2014;8(1):46–62. doi:10.2174/1872211308666140225143926
  37. David ST, Augsburger LL. Plastic flow during compression of directly compressible fillers and its effect on tablet strength. J Pharm Sci. 1977;66(2):155–159. doi:10.1002/jps.2600660205
  38. Mužíková J, Eimerová I. A study of the compaction process and the properties of tablets made of a new co-processed starch excipient. Drug Dev Ind Pharm. 2011;37(5):576–582. doi:10.3109/03639045.2010.530270
  39. Kim H, Fassihi R. Application of a binary polymer system in drug release rate modulation. 1. Characterization of release mechanism. J Pharm Sci. 1997;86(3):316–322. doi:10.1021/js960302s
  40. Agarwal V, Nazzal S, Khan MA. Optimization and in vivo evaluation of an oral dual controlled-release tablet dosage form of insulin and duck ovomucoid. Pharm Dev Technol. 2008;13(4):291–298. doi:10.1080/10837450802089123